

#44: The hematologic toxicities of chemo-immunotherapy compared to chemotherapy alone: a systematic review and meta-analysis

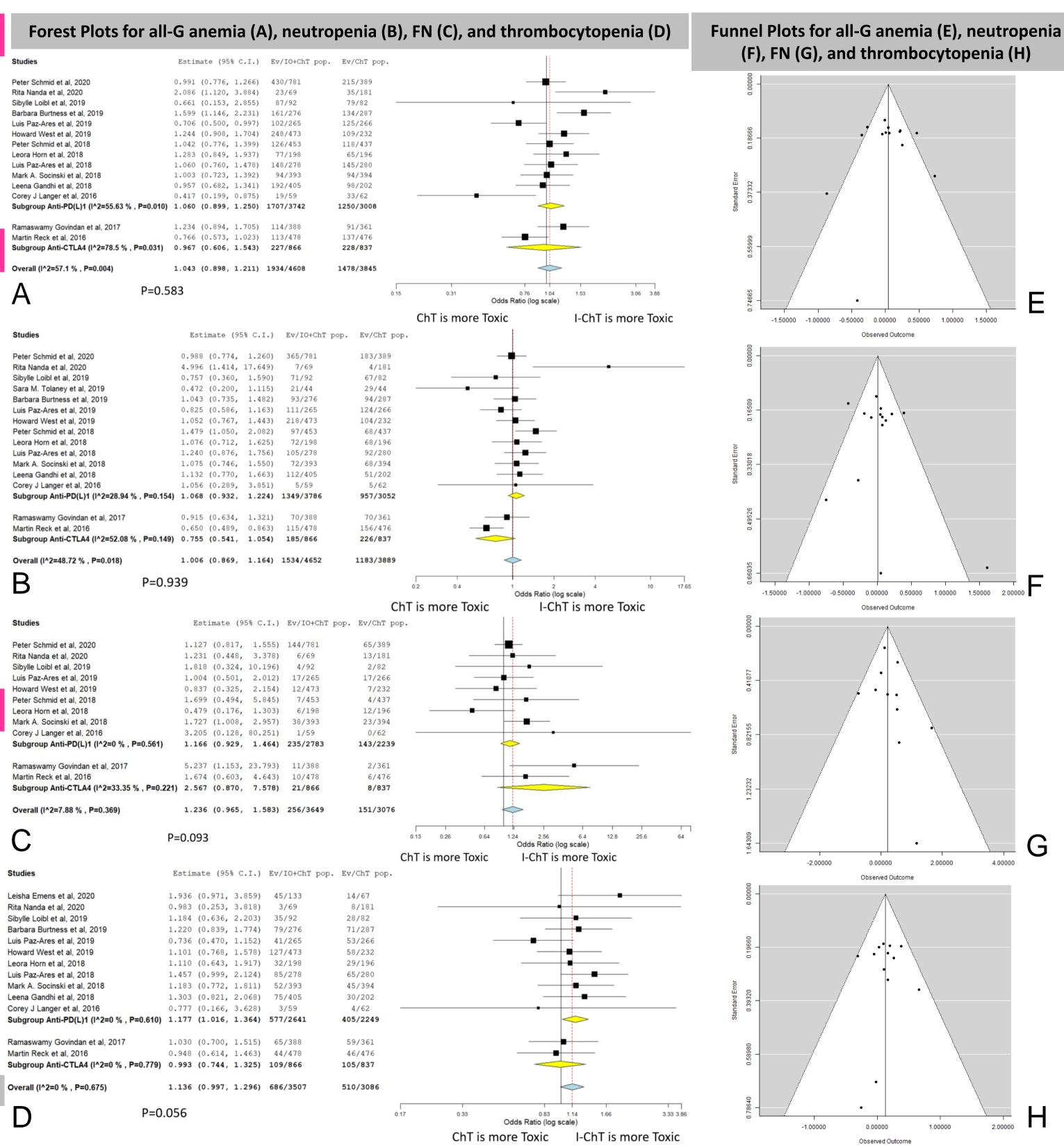
D. Eiger¹, E. Agostinetto^{1,2}, R. Caparica¹, M.A. Franzoi¹, M. Brandão¹, L. Buisseret¹, A. de Caluwé¹, D. Gimenes³, S.D. Simon^{3,4}, N.F. Pondé⁵, E. de Azambuja¹

1 – Academic Trials Promoting Team, Institut Jules Bordet et l'Université Libre de Bruxelles (ULB), Brussels, Belgium; 2 – Medical Oncology and Hematology Unit, Humanitas Clinical and Research Center – IRCCS, Rozzano (Milan), Italy; 3 – Grupo Oncoclinicas do Brasil e Centro Paulista de Oncologia, Sao Paulo, Brazil; 4 – Hospital Israelita Albert Einstein, Sao Paulo, Brazil; 5 – AC Camargo Cancer Center, Sao Paulo, Brazil

Background

- The association of immune checkpoint inhibitors (ICI) with chemotherapy (I-ChT) has been shown to be more effective than chemotherapy (ChT) alone for patients with various solid tumours, thus becoming a standard treatment option in multiple settings (1).
- It remains to be determined whether a detrimental interaction between ChT-induced myelotoxicity (2) and ICI-immune-mediated cytopenias (3) occurs, with the potential for I-ChT to elicit a worse hematologic toxicity profile than ChT alone.
- In this sense, the aim of this systematic review and meta-analysis is to address this question.

Methods & Objectives


- The primary objective was to assess whether I-ChT compared to ChT alone increases the odds of allgrade (G) anemia, neutropenia, febrile neutropenia (FN) and thrombocytopenia.
- The secondary objective was to assess whether I-ChT compared to ChT alone increases the odds of the same cytopenias grouped by grades (G1-2, G3-4, and G5).
- A systematic review using MEDLINE, Cochrane, and conference proceedings (manual selection of studies presented at ASCO and ESMO annual congresses) up to 5 June 2020, with restriction to English language, was performed in accordance with PRISMA guidelines (4).
- All randomized clinical trials comparing I-ChT vs. ChT alone in patients with solid tumors, reporting hematologic toxicities, were selected.
- Subgroup analysis according to class of ICI (anti-PD(L)1: pembrolizumab, durvalumab, atezolizumab; anti-CTLA4: ipilimumab), and a sensitivity analysis excluding trials with a different number of cycles of ChT between arms were done.
- Pooled odds ratios (pOR) with 95% confidence intervals (95% CI) were calculated using random effect models.
- Heterogeneity was assessed with the I^2 test (substantial heterogeneity whenever $I^2 \ge 50\%$)
- Publication bias was ascertained by visual inspection of funnel plots.
- All reported p-values are two-sided, with significance set at p<0.05.

Results

- Following the retrieval of 10201 studies, 19 publications (14 testing an anti-PD(L)1-based I-ChT and 5 an anti-CTLA4-based I-ChT) were included, with 5254 patients in the I-ChT group and 4316 patients in the ChT alone group (**Table 1)**.
- Table 2 shows the pooled incidences per I-ChT and ChT alone groups of all-G anemia, neutropenia, FN, and thrombocytopenia.
- There was neither a significant increase in the odds of all-G anemia (pOR=1.04; 95% CI=0.90-1.21)(Fig. A), neutropenia (pOR=1.01; 95% CI=0.87-1.16)(Fig. B), FN (pOR=1.24; 95% CI=0.97-1.58)(Fig. C), and thrombocytopenia (pOR=1.14; 95% CI=1.00-1.30)(Fig. D)(Table 2), nor by groups of G (data not shown)
- An increment in the odds of all-G thrombocytopenia was found with anti-PD(L)1-based I-ChT vs. ChT alone (pOR=1.18; 95% CI=1.02-1.36; p=0.03)(Fig. D).
- Results were similar in the sensitivity analysis (all-G anemia pOR: 1.12 [95% CI, 0.95-1.31]; all-G neutropenia pOR: 1.03 [95% CI, 0.85-1.24]; all-G FN pOR: 1.20 [95% CI, 0.95-1.52]; all-G thrombocytopenia pOR: 1.17 [95% CI, 1.00-1.38] with anti-PD(L)1 subgroup pOR: 1.21 [95% CI, 1.02-1.44]).
- Symmetric funnel plots of hematologic endpoints indicates a low risk of publication bias (Figs. E-H).

References

1 – C. Robert, Nat Commun. 2020; 2 – D. Daniel and J. Crawford, Semin Oncol. 2006;

Trial name or 1 st Author	Study design	Tumour Type	IO major class	IO name	ChT	Trial setting	If advanced setting, line of Rx	Different No. of ChT cycles?
KEYNOTE-522	Phase III	Breast	Anti-PD(L)1	Pembrolizumab	AC or EC - T + carbo	Advanced	1st	No
KEYNOTE-048	Phase III	Head and Neck	Anti-PD(L)1	Pembrolizumab	Platinum + 5-FU	Advanced	1st	No
CASPIAN	Phase III	Lung	Anti-PD(L)1	Durvalumab	Platinum + etoposide	Advanced	1st	Yes
IMpassion-130	Phase III	Breast	Anti-PD(L)1	Atezolizumab	Taxane	Advanced	1st	No
IMpower133	Phase III	Lung	Anti-PD(L)1	Atezolizumab	Platinum + etoposide	Advanced	1st	No
KEYNOTE-407	Phase III	Lung	Anti-PD(L)1	Pembrolizumab	Platinum + taxane	Advanced	1st	No
IMpower150	Phase III	Lung	Anti-PD(L)1	Atezolizumab	Platinum + taxane	Advanced	1st	No
KEYNOTE-189	Phase III	Lung	Anti-PD(L)1	Pembrolizumab	Platinum + pemetrexede	Advanced	1st	Yes
Govindan R et al	Phase III	Lung	Anti-CTLA4	Ipilimumab	Platinum + taxane	Advanced	1st	Yes
KEYNOTE-021	Phase II	Lung	Anti-PD(L)1	Pembrolizumab	Platinum + pemetrexede	Advanced	1st	Yes
Reck M et al	Phase III	Lung	Anti-CTLA4	Ipilimumab	Platinum + etoposide	Advanced	1st	No
Robert C et al	Phase III	Melanoma	Anti-CTLA4	Ipilimumab	Dacarbazine	Advanced	1st	Yes
Reck M et al	Phase II	Lung	Anti-CTLA4	Ipilimumab	Platinum + taxane	Advanced	1st	Yes
Lynch T et al	Phase II	Lung	Anti-CTLA4	Ipilimumab	Platinum + taxane	Advanced	≥2nd	Yes
KATE-2	Phase II	Breast	Anti-PD(L)1	Atezolizumab	DM-1	Advanced	1st	Yes
IMpower130	Phase III	Lung	Anti-PD(L)1	Atezolizumab	Platinum + taxane	Early	NA	No
GeparNuevo	Phase II	Breast	Anti-PD(L)1	Durvalumab	AC or EC - T	Early	NA	No
I-SPY2	Phase II	Breast	Anti-PD(L)1	Pembrolizumab	AC or EC - T	Advanced	≥2nd	No
Tolaney SM et al	Phase II	Breast	Anti-PD(L)1	Pembrolizumab	Eribulin	Advanced	1st	No

Table 2 – Pooled incidences and pooled Odds Ratio (pOR) with 95% confidence intervals (95% CI) in the I-ChT vs. ChT alone groups and subgroups, according to major ICI classes

Adverse Event	I-ChT events/Total No. of patients	ChT alone events/Total No. of patients	pOR (95% CI)	p-value	l ² test
All-grade anemia	1934/4608 (42.0%)	1478/3845 (38.4%)	1.043 (0.898-1.211)	0.583	57.1%
Subgroup anti-PD(L)1	1707/3742 (45.6%)	1250/3008 (41.5%)	1.060 (0.899-1.250)	0.487	55.6%
Subgroup anti-CTLA4	227/866 (26.2%)	228/837 (27.2%)	0.967 (0.606-1543)	0.888	78.5%
All-grade neutropenia	1534/4652 (33.0%)	1183/3889 (30.4%)	1.006 (0.869-1.164)	0.939	48.7%
Subgroup anti-PD(L)1	1349/3786 (35.6%)	957/3052 (31.4%)	1.068 (0.932-1.224)	0.341	28.9%
Subgroup anti-CTLA4	185/866 (21.4%)	226/837 (27.0)	0.755 (0.541-1.054)	0.099	52.1%
All-grade febrile neutropenia	256/3649 (7.0%)	151/3076 (5.0%)	1.236 (0.965-1.583)	0.093	7.9%
Subgroup anti-PD(L)1	235/2783 (8.4%)	143/2239 (6.4%)	1.166 (0.929-1.464)	0.185	0%
Subgroup anti-CTLA4	21/866 (2.4%)	8/837 (1.0%)	1.236 (0.965-1.583)	0.088	33.4%
All-grade thrombocytopenia	686/3507 (19.6%)	510/3086 (16.5%)	1.136 (0.997-1.296)	0.056	0%
Subgroup anti-PD(L)1	577/2641 (21.9%)	405/2249 (18.0%)	1.177 (1.016-1.364)	0.030	0%
Subgroup anti-CTLA4	109/866 (12.6%)	105/837 (12.5%)	0.993 (0.744-1.325)	0.961	0%

Conclusions

- To our knowledge, this is the largest meta-analysis focusing on the hematologic toxicity profile of I-ChT compared to ChT alone.
- Overall, I-ChT does not appear to increase hematologic toxicities as compared to ChT alone.
- Nonetheless, our data is suggestive of a small yet statistically significant increase of 18% to 21% in the odds of all-G thrombocytopenia with anti-PD(L)1-based I-ChT. This finding remained even after excluding trials with a different number of cycles of ChT between I-ChT and ChT alone arms, which could have potentially led to unbalanced myelotoxicity rates and biased results.
- In light of this data, routine monitoring for hematologic toxicities with serial blood counts during treatment with I-ChT for patients with solid tumours appears sufficient, albeit physicians familiarity with ICI-induced cytopenias should be encouraged.

Disclosures

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this poster. DE: funding for his ESMO fellowship (2018-2019): Novartis; Speaker honoraria: Janssen. EA: none. RC: speaker honoraria from Boehringer-Ingelheim, AstraZeneca and Janssen; and travel grants from AstraZeneca and Pfizer. MAF: none. MB: speaker honorarium and travel grant from Roche/GNE. LB: research grant from the Belgian Fondation contre le Cancer. AdC: none. DG: speaker fee Novartis, Pfizer, and United Medical. SDS: none.NP: consultant for Lilly, honoraria from Roche, Lilly, Novartis and AstraZeneca. EdA: honoraria and advisory board: Roche/GNE, Novartis, Seattle Genetics, Zodiacs and Libbs; travel grants: Roche/GNE, GSK/Novartis. DE, EA, RC, MAF, MB, LB, AdC, EdA: Research grant for their institute: Roche/GNE, Astra-Zeneca, Novartis, and Servier.

Table 1 – Key features of included publications

