CHUV
Radiation Oncologie
I am currently working as a Postdoctoral Researcher in the lab of Marie-Catherine Vozenin, PhD, HDR at the CHUV. I earned my BS in Molecular, Cell, and Developmental Biology at the University of California, Los Angeles in 2008. After working in the biotechnology industry for nearly six years, I started my PhD program in Environmental Health Sciences in the Department of Medicine at the University of California, Irvine. Working in the lab of Charles Limoli, PhD, my focus was on mitigation of normal tissue toxicity in the brain via treatment with stem cell-derived extracellular vesicles in tumor-free mice. I defended his dissertation in late 2019 and went directly to Switzerland to work on ultra-high-dose-rate (FLASH) radiation with Dr. Vozenin. Indeed, my focus is still on limitation of normal tissue toxicity as he studies the FLASH effect from both the normal tissue and tumor perspectives mechanistically in vivo. I currently works with a multidisciplinary team concentrated on clinical translation of FLASH radiation modalities worldwide.

Moderator of 1 Session

Session Type
Live E-Poster Discussions
Date
Wed, 01.12.2021
Session Time
11:30 - 12:30
Room
Station 02

Presenter of 2 Presentations

A FLASH-RT-SPECIFIC GENE PROFILE DRIVING ANTI-TUMOR EFFICACY?

Session Type
Live E-Poster Discussions
Date
Thu, 02.12.2021
Session Time
17:20 - 18:20
Room
Station 02
Lecture Time
17:25 - 17:30

NOT JUST HEALTHY TISSUE SPARING: HYPOXIA DOES NOT IMPACT FLASH-RT ANTI-TUMOR EFFICACY

Session Type
FLASH Mechanisms Track (Oral Presentations)
Date
Thu, 02.12.2021
Session Time
15:10 - 16:10
Room
Room 2.15
Lecture Time
15:30 - 15:40

Abstract

Background and Aims

In this study, we investigated the effects of tumor oxygen tension on the anti-tumor efficacy of ultra-high-dose-rate (FLASH) radiotherapy (RT).

Methods

U87 glioblastoma cells were xenografted in Swiss Nude mice and irradiated using a single 20-Gy dose administered at UHDR (2 pulses, 100 Hz, 1.8 µs pulse width, 0.01 s delivery) or CONV (~ 0.1 Gy/s) dose rates with the Oriatron/eRT6 (PMB, CHUV) under normoxia, hypoxia (vascular clamp), and hyperoxia (carbogen breathing). In situ oxygen tension was measured during and following irradiation using an OxyLite probe. Tumor growth was monitored using caliper measurements and tumor were sampled for RNA and protein profiling (GIF, UNIL). Metabolic analysis and ROS measurements were performed in vitro using Seahorse XF96 Analyzer and CellROX.

Results

all data oxygen.jpg

Surprisingly, the anti-tumor efficacy of FLASH-RT was not affected by hypoxia in this U87 xenograft model, whereas hypoxia induced radioresistance with CONV-RT. Genomic profiling revealed a decrease in hypoxia signaling in the FLASH-treated compared to the CONV-treated and control tumors 24h post-RT. Oxidative metabolism was also altered in response to FLASH-RT. Real-time tumor oxygen readout, ROS levels, and metabolic testing at different oxygen tensions and timepoints post-RT are in progress.

Conclusions

FLASH-RT anti-tumor efficacy does not seem to be affected by hypoxia supporting a differential role for oxygen signaling between FLASH and CONV-RT and opening new venues for clinical application of FLASH-RT in a subset of highly radiation resistant tumors.

Acknowledgement: The study is funded by SNF Synergia grant (FNS CRS II5_186369)

Hide

Author Of 2 Presentations

A FLASH-RT-SPECIFIC GENE PROFILE DRIVING ANTI-TUMOR EFFICACY?

Session Type
Live E-Poster Discussions
Date
Thu, 02.12.2021
Session Time
17:20 - 18:20
Room
Station 02
Lecture Time
17:25 - 17:30

NOT JUST HEALTHY TISSUE SPARING: HYPOXIA DOES NOT IMPACT FLASH-RT ANTI-TUMOR EFFICACY

Session Type
FLASH Mechanisms Track (Oral Presentations)
Date
Thu, 02.12.2021
Session Time
15:10 - 16:10
Room
Room 2.15
Lecture Time
15:30 - 15:40

Abstract

Background and Aims

In this study, we investigated the effects of tumor oxygen tension on the anti-tumor efficacy of ultra-high-dose-rate (FLASH) radiotherapy (RT).

Methods

U87 glioblastoma cells were xenografted in Swiss Nude mice and irradiated using a single 20-Gy dose administered at UHDR (2 pulses, 100 Hz, 1.8 µs pulse width, 0.01 s delivery) or CONV (~ 0.1 Gy/s) dose rates with the Oriatron/eRT6 (PMB, CHUV) under normoxia, hypoxia (vascular clamp), and hyperoxia (carbogen breathing). In situ oxygen tension was measured during and following irradiation using an OxyLite probe. Tumor growth was monitored using caliper measurements and tumor were sampled for RNA and protein profiling (GIF, UNIL). Metabolic analysis and ROS measurements were performed in vitro using Seahorse XF96 Analyzer and CellROX.

Results

all data oxygen.jpg

Surprisingly, the anti-tumor efficacy of FLASH-RT was not affected by hypoxia in this U87 xenograft model, whereas hypoxia induced radioresistance with CONV-RT. Genomic profiling revealed a decrease in hypoxia signaling in the FLASH-treated compared to the CONV-treated and control tumors 24h post-RT. Oxidative metabolism was also altered in response to FLASH-RT. Real-time tumor oxygen readout, ROS levels, and metabolic testing at different oxygen tensions and timepoints post-RT are in progress.

Conclusions

FLASH-RT anti-tumor efficacy does not seem to be affected by hypoxia supporting a differential role for oxygen signaling between FLASH and CONV-RT and opening new venues for clinical application of FLASH-RT in a subset of highly radiation resistant tumors.

Acknowledgement: The study is funded by SNF Synergia grant (FNS CRS II5_186369)

Hide