Universidad de Santiago
Particle Physics

Moderator of 1 Session

Session Type
FLASH Modalities Track (Oral Presentations)
Date
Fri, 03.12.2021
Session Time
14:30 - 15:30
Room
Room 2.31

Presenter of 1 Presentation

ULTRA THIN PLANE-PARALLEL IONIZATION CHAMBERS: EXPANDING THE RANGE OF AIR IONIZATION CHAMBERS INTO ULTRA-HIGH DOSE RATE.

Session Type
FLASH Modalities Track (Oral Presentations)
Date
Wed, 01.12.2021
Session Time
14:50 - 15:50
Room
Room 2.15
Lecture Time
15:00 - 15:10

Abstract

Background and Aims


Ionization chambers (IC) have been and remain the secondary standard of choice in the vast majority of hospitals all over the world. When an IC is irradiated at dose rates that exceed the conventional limits the ion recombination correction factor of these chambers starts to increase. Working in these regimes is unfeasible as the required correction factors exceed dosimetry standards. Analytical theories describing ion recombination effect fail to actually describe their behavior in the ultra high dose rate (UHDR).

Methods

Ultra-thin gap plane-parallel ionization chambers exhibit a submillimetric electrode distance. This geometry enhances the collection of the charge carriers by increasing the electric field strength inside the chamber and reducing the charge carrier densities between electrodes. The free electron fraction is much higher than in a conventional chamber, decreasing the amount of ion-recombination. The experimental measurements have been performed in UHDR electron beams (7 MeV and 9 MeV) at SIT ElectronFLASH accelerator.

Results

utic_vs_dpp.png

Figure 1: Response of an ultra-thin plane parallel ionization chamber prototype with a 0.27 mm gap polarized at -250 V in an electron beam from a SIT ElectronFLASH accelerator without application of any ion recombination correction.

Conclusions

Ultra thin gap plane-parallel ionization chambers are a promising option as secondary standard dosimeters for the FLASH radiotherapy quality assurance.

Acknowledgement
This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Hide

Author Of 3 Presentations

OVERVIEW AND CURRENT STATUS OF THE JOINT RESEARCH PROJECT UHDPULSE - “METROLOGY FOR ADVANCED RADIOTHERAPY USING PARTICLE BEAMS WITH ULTRA-HIGH PULSE DOSE RATES”

Session Type
FLASH Modalities Track (Oral Presentations)
Date
Wed, 01.12.2021
Session Time
14:50 - 15:50
Room
Room 2.15
Lecture Time
14:50 - 15:00

Abstract

Background and Aims

Dosimetry for FLASH radiotherapy, VHEE radiotherapy as well as for laser-driven beams cause significant metrological challenges due to the ultra-high dose rates and pulsed structure of these beams, in particular for real time measurements with active dosimeters. It is not possible to simply apply existing Codes of Practice available for dosimetry in conventional external radiotherapy here. However, reliable standardized dosimetry is necessary for accurate comparisons in radiobiological experiments, to compare the efficacy of these new radiotherapy techniques and to enable safe clinical application. UHDpulse aims to develop the metrological tools needed for reliable real-time absorbed dose measurements of electron and proton beams with ultra-high dose rate, ultra-high dose per pulse or ultra-short pulse duration.

Methods

Within UHDpulse, primary and secondary absorbed dose standards and reference dosimetry methods are developed, the responses of available state-of-the-art detector systems are characterised, novel and custom-built active dosimetric systems and beam monitoring systems are designed, and methods for relative dosimetry and for the characterization of stray radiation are investigated.

Results

Prototypes of different active dosimetry systems show promising results for real-time dosimetry for particle beams with ultra-high pulse dose rates. The results of the UHDpulse project will be the input data for future Codes of Practice.

Conclusions

A brief overview of the progress in the UHDpulse project and the involved institutions will be given.

Acknowledgement: This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Hide

ULTRA THIN PLANE-PARALLEL IONIZATION CHAMBERS: EXPANDING THE RANGE OF AIR IONIZATION CHAMBERS INTO ULTRA-HIGH DOSE RATE.

Session Type
FLASH Modalities Track (Oral Presentations)
Date
Wed, 01.12.2021
Session Time
14:50 - 15:50
Room
Room 2.15
Lecture Time
15:00 - 15:10

Abstract

Background and Aims


Ionization chambers (IC) have been and remain the secondary standard of choice in the vast majority of hospitals all over the world. When an IC is irradiated at dose rates that exceed the conventional limits the ion recombination correction factor of these chambers starts to increase. Working in these regimes is unfeasible as the required correction factors exceed dosimetry standards. Analytical theories describing ion recombination effect fail to actually describe their behavior in the ultra high dose rate (UHDR).

Methods

Ultra-thin gap plane-parallel ionization chambers exhibit a submillimetric electrode distance. This geometry enhances the collection of the charge carriers by increasing the electric field strength inside the chamber and reducing the charge carrier densities between electrodes. The free electron fraction is much higher than in a conventional chamber, decreasing the amount of ion-recombination. The experimental measurements have been performed in UHDR electron beams (7 MeV and 9 MeV) at SIT ElectronFLASH accelerator.

Results

utic_vs_dpp.png

Figure 1: Response of an ultra-thin plane parallel ionization chamber prototype with a 0.27 mm gap polarized at -250 V in an electron beam from a SIT ElectronFLASH accelerator without application of any ion recombination correction.

Conclusions

Ultra thin gap plane-parallel ionization chambers are a promising option as secondary standard dosimeters for the FLASH radiotherapy quality assurance.

Acknowledgement
This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Hide

SECONDARY STANDARD DOSIMETRY: UNDERSTANDING THE IONIZATION CHAMBERS FOR THE FUTURE ULTRA-HIGH DOSE RATE APPLICATIONS

Session Type
FLASH in the Clinic Track (Oral Presentations)
Date
Thu, 02.12.2021
Session Time
11:00 - 12:00
Room
Room 2.31
Lecture Time
11:30 - 11:40

Abstract

Background and Aims

Ionization chamber models developed during the last century by Boag have been and continue to be of great interest for daily
clinical practice. However, its simplicity is achieved at the cost of ignoring higher order effects that do not play
an important role in the dose rates found in conventional radiotherapy. However, when we get into the ultra
high dose rate regime, these models have shown important discrepancies.

Methods

A computational model was developed whose main objective is to solve the differential equations governing
charge transport along the ionization chambers. Charge collection efficiency and instantaneous current of different ionization chambers obtained from the model are currently evaluated with a set of measurements carried
out in collaboration with the PTB.

Results

figure1_simulation.png

Figure 1: Charge collection efficiency (CCE) for different analytical models currently used for saturation correction of ionization chambers and their simulation counterpart for a PPC40 chamber. CCE was evaluated for a plane-parallel ionization chamber with 2 mm gap at 300 V and a pulse duration of 2.5 μs at reference temperature and pressure conditions.

figure2_simulation.png

Figure 2: Comparison between instantaneous current from simulation and measured at 4 Gy/pulse and 400 V using a ROOS chamber.

Conclusions

Our computational model, which is still under development, shows better agreement to experimental data than existing analytical models and a preliminary version of this software has been released for testing.


Acknowledgement
This project 18HLT04 UHDpulse has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme.

Hide