

TP53 co-mutation and survival outcomes in non-small cell lung cancer (NSCLC) with rare driver mutations

Jamie Feng¹, Katrina Hueniken², Zhen (Jason) Fan¹, Elizabeth Faour¹, Lucy Corke¹, Natasha B. Leighl¹, Geoffrey Liu¹, Penelope A. Bradbury¹, Adrian Sacher¹, Lawson Eng¹, Tracy Stockley³, Ming Sound Tsao¹, Frances A. Shepherd¹

¹Division of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto ON, Canada ²Department of Biostatistics, PMCC, UHN, Toronto ON, Canada

TARBOR TARBOR

of Medical Oncology, Princess Margaret Cancer Centre (PMCC), University Health Network (UHN), Toronto ON, Canada ²Department of Biostatistics, PMCC, UHN, Toronto ON, Canada ³ Laboratory Medicine Program, UHN, Toronto ON, Canada

1353P

<u>Introduction</u>

TP53 variants are common in non small cell lung cancer (NSCLC) and have been reported as predictive of response and prognostic of poor outcome in EGFR-mutant NSCLC¹. The impact of TP53 co-mutation in NSCLCs carrying rarer driver mutations with approved targeted treatments is unclear.

Methods

Records of 319 patients with rare driver mutation positive NSCLC at Princess Margaret Cancer Centre were reviewed. Associations between *TP53* status, baseline demographics and outcomes (response [ORR], survival [OS], recurrence-free survival [RFS] for stage I-III patients, progression-free survival [PFS] for stage IV patients), were investigated. ORR (to first-line targeted therapy only) was compared via Fisher's exact test. OS and PFS were compared by Kaplan-Meier estimates, and Cox regression adjusted for stage at diagnosis with wildtype (WT) as reference.

Results

TP53 variants were found in 123/319 (38.6%; Table 1) with >1 driver mutations in 33 (10.3%). The only significant demographic difference between *TP53*-mutated (MUT) and WT was a higher percentage of smokers in the WT (56% *TP53-MUT* v 68% *TP53*-WT, p=0.001).

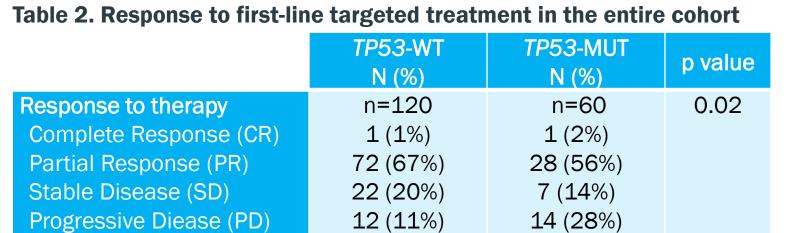
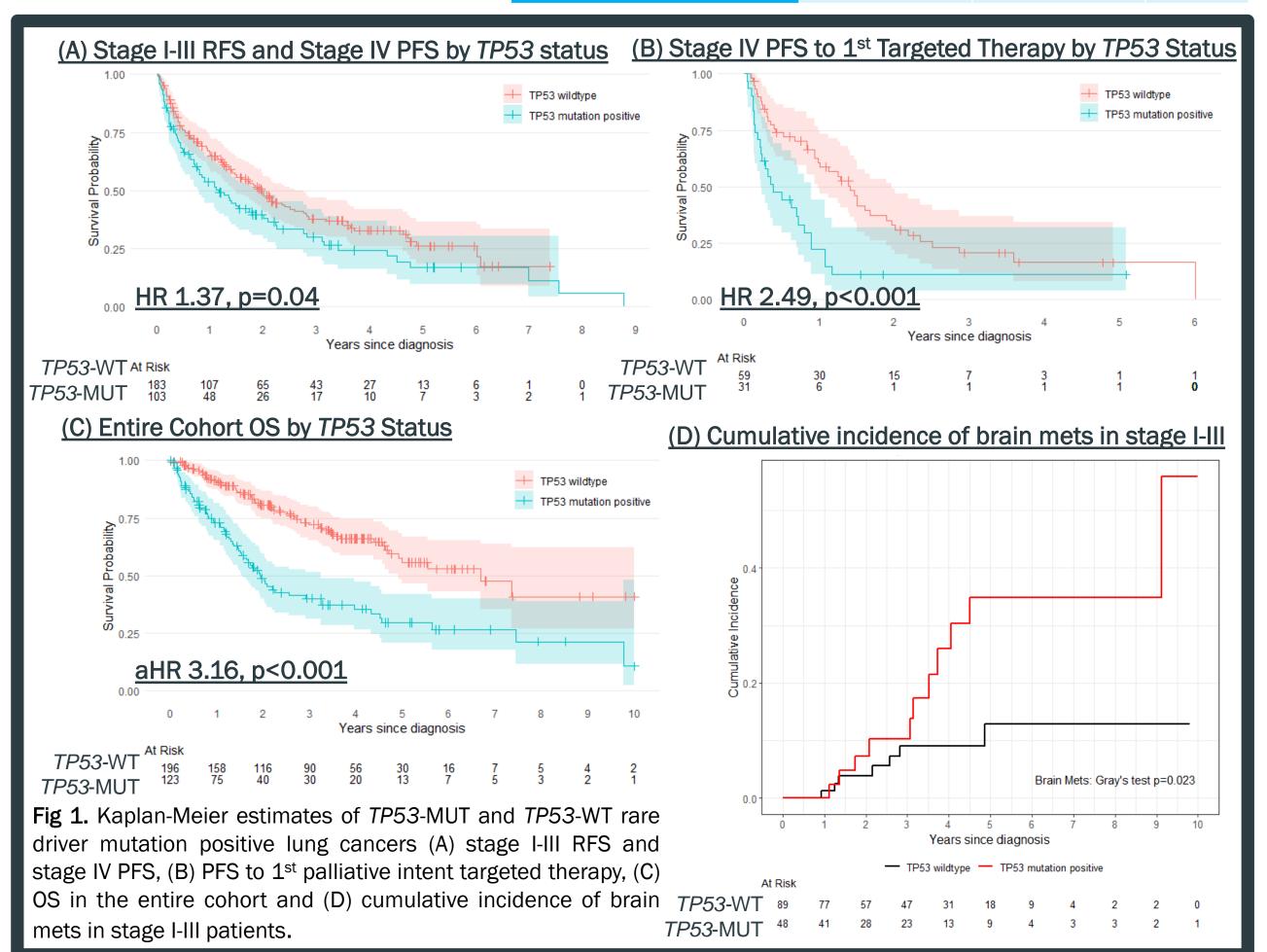

All nationts TP53-WT TP53-MUT in value

Table 1. Baseline characteristics

	All patients	1P53-W1	IP53-MUI	p value
	(n=319) N (%)	(n=148) N (%)	(n=123) N (%)	
Median age (range)	64.2 (22.0, 96.0)	63.0 (31.8, 91.0)	65 (22, 96)	0.38
Female sex	195 (61%)	124 (63%)	71 (58%)	0.38
Never smoker	191 (64%)	125 (68%)	66 (56%)	0.001
Adenocarcinoma	302 (95)	186 (95)	116 (94)	0.73
Stage at diagnosis				0.44
	65 (21%)	45 (23%)	20 (16%)	
	18 (6%)	10 (5%)	8 (7%)	
III	54 (17%)	34 (18%)	20 (16%)	
IV	180 (57%)	105 (54%)	75 (61%)	
PD-L1 >50%	111 (40%)	60 (36%)	51 (47%)	0.16
Brain metastases at diagnosis	57 (19%)	37 (21%)	20 (17%)	0.56
Brain metastases at any time	105 (35%)	62 (34%)	43 (37%)	0.64
Driver mutations *				
ALK	68	56	12	
BRAF V600E	29	17	12	
EGFR exon 20 ins	29	16	13	
EGFR (Uncommon)	40	25	15	
Fusion (ALK, ROS, RET, NRG1)	121	87	34	
HER2 exon 20 ins	50	27	23	
HER2 oncogenic SNV	12	6	6	
KIT	2	0	2	
MET exon 14 skip	44	24	20	
NRG1	4	2	2	
RET	21	13	8	
ROS1	28	16	12	


Results cont.

ORR to *first-line* targeted treatment was 58% vs 68% in the *TP53*-MUT and WT cohorts, respectively (p=0.28; Table 2). More patients with TP53-MUT cancer had progressive disease (PD) as best response (28% v 11%, p=0.02).

13

10

mPFS (Fig 1B) to 1^{st} line/instance of targeted therapy was 4.6m for *TP53*-MUT (95% CI 2.7-10.7) v 16.9m for WT (CI 11.7-23.5) (hazard ratio [HR] 2.49, CI 1.49-4.14; p<0.001). Similar findings were seen in mRFS (early stage) and mPFS (late stage) by *TP53* status (Fig 1A).

Median OS (Fig 1C) was significantly shorter in the *TP53*-MUT cohort at 23.4m (CI 18.7-38.9) compared to 80.1m (CI 58.9-not reached) (HR 2.63, CI 1.86-3.72; p<0.001).

There was a significantly higher incidence of brain metastases in stage I-III patients with TP53-MUT (Fig 1D). This was not seen in stage IV patients (not shown, Gray's test p=0.8).

Acknowledgements: The authors would like to thank our patients for their contribution to this work. Dr. Jamie Feng is supported by the George and Helen Vari Foundation Fellowship at the Princess Margaret Cancer Foundation.

Correspondence:
jamie.feng@uhn.ca
No DOI

Reterences

Labbe et al. J Lung Can. 2017, 111, 23-29.
 Nishikawa et al. Cancers (Basel). 2023, 15(2), 429.

Table 3. Survival outcomes and response to 1st line targeted therapy (TP53-MUT vs WT)

	Overall survival	therapy)	palliative targeted therapy
Entire cohort	23.4m v 80.1m aHR 3.16, Cl 2.21-4.50; p<0.001, n=319	4.6m v 11.2m HR 1.89, CI 1.31-2.75; p<0.001, n=149	PD rate 28% v 11% p=0.02, n=157
HER2	24.3m v 56.5m aHR 2.39, CI 1.20-4.76; p=0.01, n=70	4.8m v 7.5m HR 1.60, CI 0.82-3.14; p=0.17, n=42	PD rate 56% v 22% p=0.04, n=39
Fusion (ALK, ROS1, RET, NRG1)	20.0m v 80.1m aHR 5.78, CI 2.84-11.75; p<0.001, n=121	3.0m v 16.9m HR 2.69, CI 1.41-5.14; p=0.003, n=62	PD rate 31% v 4% p=0.005, n=71
ALK	14.4m v 80.1m aHR 6.06, CI 2.08-17.60; p<0.001, n=64	3.7m v 22.1m HR 2.68, CI 1.05-6.84; p=0.04, n=39	PD rate 38% v 5% p=0.03, n=45
MET exon 14 skipping	22.8m v 26.4m aHR 1.92, CI 0.77-4.79; p=0.16, n=44	3.7m v 3.4m HR 0.96, CI 0.36-2.56; p=0.93, n=19	PD rate 0% v 2% p=0.50, n=18
BRAF V600E	11.0m v 41.2m aHR 3.35, CI 1.08-10.36; p=0.04, n=29	1.5m v 4.4m HR 2.01, CI 0.47-8.56; p=0.35, n=10	PD rate 0% v 0% n=8
EGFR uncommon	67.7m v NR aHR 1.61, CI 0.56-4.65; p=0.38, n=40	12.9m v 14.9m n=14*	PD rate 11% v 30% p=0.58, n=19
EGFR exon 20 ins	17.4m v NR aHR 4.91, CI 1.44-16.80; p=0.01, n=29	6.7m v 4.2m n=8*	PD rate 0% v 50 % p=0.46, n=8

* p-values not provided if it could not be reliably estimated

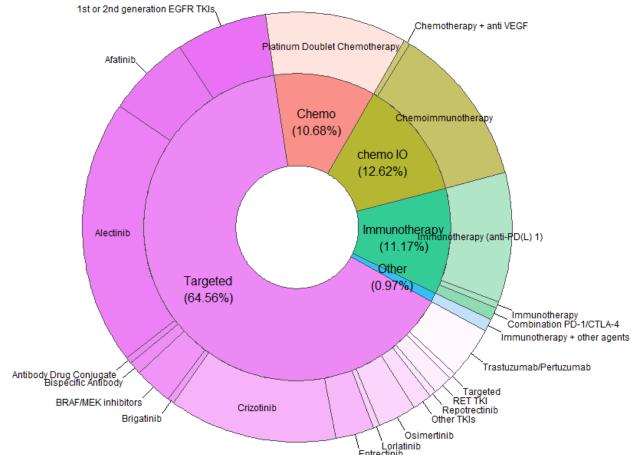


Fig 2. Distribution of 1^{st} line palliative treatment including targeted therapy, chemotherapy and/or immunotherapy.

Discussion

 Our retrospective cohort demonstrates poorer outcomes in TP53-MUT oncogene-addicted NSCLC

UNIVERSITY OF

PES in stage IV (any Response to 1st line of

- TP53-MUT had a tendency to have progression as best response which may explain the shortened survival
- Currently there is no targeted intervention or change in treatment for lung cancers with TP53 mutations, but many novel agents are in development ²

TP53 co-mutation with multiple rare driver mutations is predictive of poor response to targeted treatments and prognostic of shorter OS and PFS in NSCLC.

* 33 patients carried >1 driver mutation and may be double counted in different cohorts