Cell line study of nucleosome-based biomarkers in the diagnosis and detection of relapses in glioblastoma

Jonathan Decarpentrie1, Priscilla Van den Ackerveken2, Adrien Govaerts2, Alison Lobbens2, Edeline Beine3, Nathalie Donis1, Marielle Herzog2,† & Jonathan Douxfils1,†

1 Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, 5000 Namur, Belgium
2 Belgian Volition SRL, 5032 Isnes, Belgium
3 Qualiblood s.a., Research and Development Department, 5000 Namur, Belgium
† Co-last authors

INTRODUCTION

Glioblastoma (GBM) is the most frequent and most aggressive brain tumor in adults. Given the impossibility of removing the entire tumor, relapse is observed in almost all patients, leading to a 5-year survival rate of around 7%. To date, the diagnosis of GBM mainly relies on imaging techniques (MRI) and tissue biopsies. Tissue biopsy is required to guide clinical making. However, biopsies have limitations: not only are they high risk but there also only represent a snapshot of the whole tumor complexity. Conversely, liquid biopsy (CSF or blood) have the potential to diagnose and monitor the tumor in a dynamic way given the presence of tumor material. To date, no biomarkers have been identified and used in clinical routine for the diagnosis, monitoring and prognosis of GBM in blood or CSF. Within the circulome, this project focuses on epigenetic modifications of nucleosomes, such as post-translational modifications of histones. This approach has already been proven in colorectal, lung or blood cancer.

METHODS

• 4 glioblastoma (GBM) cell lines: U-87MG, U-118MG, U-138MG and SF126
• 4 control cell lines:
 - 3 non-GBM cancer controls: pancreas (MiaCaPa-2), liver (HepG2) and uterus/cervix (HeLa)
 - 1 healthy brain cell line: HMC3

RESULTS

GBM cells were exposed to GSK343, a selective EZH2 inhibitor (EZH2i), over time. EZH2 catalyses H3K27 trimethylation without affecting the methylation state of H3K9. In control cells (untreated - DMSO vehicle), the global levels of H3K27Me3 (16.09%±1.59) and H3K9Me3 (22.92%±2.09) remained constant over time. Conversely, a progressive decrease of H3K27Me3 ratio was observed during the EZH2i treatment: a significant decrease was noted after 24 hours (DMSO/EZH2i=32%, p<0.05) and 48 hours (DMSO/EZH2i=41%, p<0.05). In parallel, no significant differences were observed between the control condition (untreated) and the EZH2i treatment groups for the expression of H3K9Me3. Those results were confirmed by western-blotting.

CONCLUSIONS/DISCUSSION

An elevation of the H3S10pH, the H3R8Cit as well as an increasing trend of H3K4Me2 has been highlighted. Those PTMs have been linked with glioblastoma, notably H3S10pH which has been observed in tumor sections of patients presenting a poor survival. One limitation is the use of a cellular model requiring nucleosomes extraction. Whereas, in vivo, there is a limited release of nucleosomes in the healthy subject’s bloodstream while such a release will be observed in GBM patients due to a blood-brain barrier disruption. Moreover, this project highlighted the potential usefulness of the NuQ™ Immunoassays platform in the monitoring of GBM.

ACKNOWLEDGEMENT / DOI

Jonathan Decarpentrie has received financial support from Belgian Volition SRL. The project is sponsored by Belgian Volition SRL and Qualiblood s.a.

CONTACT INFORMATION

Jonathan Decarpentrie
jonathan.decarpentrie@unamur.be
+32 (0)81 72 53 24