999P - JIN-A02, a fourth-generation, highly effective tyrosine kinase inhibitor with intracranial activity, targeting EGFR C797S mutations in NSCLC

Mi Ran Yun¹, Mi Ra Yu², Krishna Babu Duggirala³, Kwangho Lee³, Sun Min Lim⁵, Anna Jo⁴, Ethan Seah⁴, Choonok Kim⁴, Byoung Chul Cho⁵

¹Severance Biomedical Science Institute, Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea; ³Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea; ⁴J INTS BIO Inc., Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁴J INTS BIO Inc., Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic of Korea; ⁵Yonsei University College of Medicine, Seoul, Republic Of Korea; ⁵Yonsei University College of Medicin

Introduction

- Even though epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) have improved treatment outcomes for EGFR mutant, resistance inevitably emerges with disease progression and often with CNS metastasis.
- C797S mutation is one of the most common on-target resistance mutation after the use of 3rd generation TKIs such as Osimertinib.
- Importantly, the allelic context in which C797S is acquired has potential implications for treatment. When C797S positive cells are in cis with the T790M mutation, there are no available treatment.¹⁾
- JIN-A02 is a new 4th generation investigational EGFR-TKI, which is highly selective and potent against C797S double and triple mutations.²⁾
- JIN-A02 has a strong inhibitory activity against both cis and trans allele of C797S with high brain penetration.
- Here we describe the preclinical data which indicates that JIN-A02 is a highly effective EGFR-TKI targeting C797S mutations and is potent to treat CNS metastasis.

Method

- Cellular activities of JIN-A02 were evaluated on phosphorylation-EGFR expression with AlphaLISA assay in EGFR mutant cell lines and cell viability assay in Ba/F3 cell lines overexpressing human EGFR mutants and patient-derived cell (PDC) lines harboring EGFR mutations.
- Antitumor activities of JIN-A02 were evaluated in cell derived xenograft (CDX) and patients-derived xenografts (PDX).
- The in vivo anti-tumor activity of JIN-A02 was evaluated in an intracranial tumor models which were generated through implanting H1975-luc into brains of female BALB/c nude mice. MRI analysis was performed to monitor the tumor growth.

Results

JIN-A02, highly selective and potent inhibitor

In AlphaLISA assay, JIN-A02 showed high potency in EGFR mutants.

AlphaLISA assay IC ₅₀ (nM)										
Compound		Er	ngineered	NSCLC cell line						
	WT	DC	LC	DTC	LTC	A431 WT	PC-9	NCI-H1975 LTC		
Osimertinib	109	>3000	>18000	>3000	No Activity	42	6.7	No Activity		
JIN-A02	857	111	355	4.7	219	1282	9.1	12.8		

Cellular activity in trans/cis isomers of JIN-A02

JIN-A02 strongly inhibited cellular activity in trans model (IC_{50} =89.7 nM, PDO) (data on file) and in cis model (IC_{50} =61.5 nM, PDC) of EGFR ex19del/T790M/C797S, with superiority over the 3rd generation TKI Osimertinib (IC_{50} >2,000 nM for both isomers).

In vitro cell viability assay

 In vitro cell viability assay, JIN-A02 exhibited a potent inhibitory effect of EGFR mutants, especially mutant harboring C797S mutations while sparing EGFR wild type (WT).

Cell viability assay IC ₅₀ (nM) in Engineered Ba/F3										
Compound	WT	ex19del	L858R	DT	LT	DC	DTC	LTC	DTQ	LTQ
Osimertinib	11.9	3.5	3.6	3.3	4.3	868.5	>2,000	>1,000	>1,000	>800
JIN-A02	>1,000	3.2	9.1	12.3	5.3	0.02	81.7	49.2	102.0	62.1

Cell viability assay IC ₅₀ (nM) in NSCLC cell lines									
Compound	A549	PC-9	HCC-4006	PC-9GR	NCI-H1975	YUO-057 (trans)	YU-1097 (cis)		
		ex19del	ex19del	DT	LT	DTC	DTC		
Osimertinib	_	1.63	7.71	24.29	36.88	>10,000	>2,000		
JIN-A02	742.40	13.48	14.41	62.05	72.29	89.65	61.50		

In vivo anti-tumor activity of JIN-A02

In vivo PDX model (ex19del/T790M/C797S)

- In PDX mouse model (YU-1097, EGFR ex19del/T790M/C797S), JIN-A02 50 and 100 mg/kg significantly suppressed tumor growth.
- In the PDX mouse model (YHIM-1094, EGFRex19del/T790M/C797S) (data on file), JIN-A02 delayed tumor growth at a dose of 30 mg/kg.

Significant inhibition of EGFR autophosphorylation of JIN-A02 in a time- and dose-dependent manner

 Oral, once daily administration of JIN-A02 resulted in significant tumor regression. After repeated once a day, oral administration of JIN-A02, JIN-A02 inhibited pEGFR in BaF3 ex19del/C797S, L858R/C797S, and L858R/T790M/C797S CDX models.

Intracranial anti-tumor activity

 JIN-A02 showed a tendency to delay tumor growth in a dose-dependent manner compared to the control group (Vehicle) on Day 21.

Conclusion

- JIN-A02 is a highly potent 4th generation EGFR-TKI against double and triple C797S resistance mutations, including both cis and trans isomers
- JIN-A02 is selective away from EGFR WT and showed BBB penetration with strong intracranial anti-tumor effects.
- JIN-A02 is scheduled to start the First-in-human clinical trial (NCT05394831) this year based on these convincing results.

References

1) A Leonetti et al. British Journal of Cancer (2019) 121:725–737

2) Cho BC et al. IASLC 2022 WCLC

Acknowledgments

Some of the cell assays and in vivo experiments were conducted at Yonsei University (Republic of Korea) and WuXi AppTec Co., Ltd (China).

Disclosures

This research was funded by J INTS BIO Company. J INTS BIO Company reviewed and provided feedback on the poster. The authors had full editorial control of the poster and provided their final approval of all content.