The co-mutations and genetic features of \textit{BRAF}-mutated gene mutations in a large Chinese MSS colorectal cancer cohort

Sici Chen1, Zeying Su1, Shuizhi Ma1, Zihao Sun1, Xinyi Liu2, Mengli Huang2

1Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
2Department of Medical, 3D Medicines Inc., Shanghai, China

Background

\textbf{BRAF} p.V600E is a known prognostic factor for poor progression-free survival and overall survival in colorectal cancer, occurring in 5\%-8\% patients. This is a special population resistance to chemotherapies. A combined regimen of targeted drugs including MEK inhibitor, \textit{BRAF} inhibitor and EGFR inhibitor is effective in \textit{BRAF} V600E mutated patients, while it only authorized as second-line treatment. \textit{BRAF} V600E mutation was also considered correlated with sporadic MSI-H. However, studies on other alterations in \textit{BRAF} gene are few, and the differences of comprehensive genetic features between \textit{BRAF} mutated and \textit{BRAF} wild-type in microsatellite stable (MSS) patients remain unclear.

Methods

A total of 6521 CRC with detected genomic amplifications were included in this analysis. Calling of single nucleotide variants (SNV), copy number variants (CNV), insertion/deletions (indels), fusions were performed using a wide panel next-generation sequencing (NGS) testing. SNV and indels in \textit{BRAF} gene excluding p.V600E were defined as other \textit{BRAF} mutations.

Results

316 (4.85\%) patients had \textit{BRAF} V600E alteration (V600E group), 243 (3.73\%) patients were detected to have other \textit{BRAF} mutations (\textit{BRAF other} group) and the rest was \textit{BRAF} wild-type (5962, 91.43\%). V600E and other \textit{BRAF} mutations occurred mutually exclusively (Figure 1).

The V600E group had significant higher somatic mutational rate in SMAD4 (26.6\% vs 17.3\% vs 14.9\%) and RNF43 (16.1\% vs 2.9\% vs 2.4\%) genes and lower mutational rate in APC (15.5\% vs 54.7\% vs 63.9\%) gene compared with the \textit{BRAF other} group and \textit{BRAF} wild-type group. The most recurrent amplified gene in V600E group was MYC (7\% vs 3.29\% vs 5\%), while another important gene in 8q24, PTK2 was amplified most in \textit{BRAF other} group (2.5\% vs 2.8\% vs 3.7\%).

As for tumor mutational burden (TMB) levels, the other \textit{BRAF} group had much higher TMB levels (median TMB level in the V600E group, the other \textit{BRAF} group and \textit{BRAF} wild-type group were 7.76 vs 59.4 vs 9.91) and significant correlated with hypermutation (>80 Muts/Mb), while no one hypermutation case was found in the V600E group (Figure 2).

Conclusion

The mutational rates of \textit{BRAF} V600E and other \textit{BRAF} mutations were approximate in MSS colorectal cancer. But the two groups had very different somatic genomic characteristics and very different correlations with hypermutation.