1080P: Immune checkpoint blockade therapy affects circulating FLIP-expressing monocyte-myoelid-derived suppressor cells (M-MDSC) in non-prosger non-small cell lung cancer patients.

Lorenzo Belluomini1, Cristina Frusteri2, Annalisa Adamo3, Sara Pilotto1, Giulia Sartori1, Jessica Insolda1, Marco Sposito3, Simone Caligola2, Luca Giacobazzi2, Ornella Poffe3, Davide Rizzini3, Antonio Vella4, Carmine Carbone5, Genny Piro4, Francesco De Santis3, Silvia Sartorini3, Stefania Canè3, Michele Milella3, Vincenzo Bronte4, Stefano Ugel1

1Section of Oncology, Department of Medicine, University Hospital Trust of Verona, Verona, Italy; 2Section of Immunology, University of Verona, Verona, Italy; 3Oncology Department, Ospedale San Gottardo - AUSLSS Berica – Distretto EST, Vicenza, Italy; 4Medical Oncology Unit. Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS – Universita Cattolica del Sacro Cuore, Rome, Italy

Background

- Cancer cells affect the normal myelopoiesis favoring the generation of myeloid cells with immunosuppressive and inflammation-associated functions such as myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) able to support its growth and progression.

- Recently, we demonstrated that the antiapoptotic molecule cellular FLICE-inhibitory protein (c-FLIP) that functions as an important modulator of caspase-8 is crucial for the development of monocyte (M)-MDSCs.

- We speculated that immune checkpoint inhibitor (ICI)-based therapy could affect the FLIP-expressing monocyte myeloid cells frequencies and functions in non-prosger (NP) non-small cell lung cancer (NSCLC) patients.

Methods

- We enrolled 34 NSCLC patients: 16 patients received immunotherapy as the first line of treatment according to PD-L1 expression, 18 patients as second-line treatment.

- We collected blood samples at two time points: before ICI treatment (T0) and during the first clinical evaluation (T1). Circulating immune landscape was defined by multiparametric flow cytometry and systemic cytokine levels were tested by multiplex ELISA assay.

- Plasma samples were collected and stored at -80°C for cytokines quantification. Peripheral blood mononuclear cells (PBMCs) and CD14+ cells were isolated from NSCLC patient-derived whole blood and cryopreserved to evaluate c-FLIP expression and suppressive properties of monocytes, respectively. The suppressive activity of thawed monocytes was evaluated by proliferation assay through an in vitro culture of NSCLC-derived CD14+ cells with CD3/CD28-activated, Cell-Tape-labelled PBMCs isolated from bufy-coats at 3:1 ratio.

Patients’ population

Overall, 34 patients with advanced NSCLC who were treated with ICIs met the criteria for the analysis [Table 1]:

- 16 non-prosger (NP) pts
- 18 prosger (P) pts

Table 1. Clinical and biological characteristics of the population.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>NP (N=16)</th>
<th>P (N=16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male: 16/20</td>
<td>12/16 (100%)</td>
</tr>
<tr>
<td>Age, median (range)</td>
<td>72 (62-84)</td>
<td>72.5 (58-82)</td>
</tr>
<tr>
<td>FLICE/STAT1 expression level</td>
<td>72 (62-84)</td>
<td>72 (62-84)</td>
</tr>
<tr>
<td>Activity</td>
<td>0: 14/16 (87.5)</td>
<td>8/16 (50%)</td>
</tr>
<tr>
<td>1: 17/20 (85)</td>
<td>12/16 (75%)</td>
<td></td>
</tr>
<tr>
<td>2: 3/4 (75)</td>
<td>1/4 (25%)</td>
<td></td>
</tr>
<tr>
<td>Inhine</td>
<td>Never: 7/20 (35)</td>
<td>6/16 (37.5)</td>
</tr>
<tr>
<td>Former: 20/28 (71)</td>
<td>11/16 (68.7%)</td>
<td></td>
</tr>
<tr>
<td>Current: 7/4 (17.5)</td>
<td>2/4 (50%)</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>Adenocarcinoma: 20/25 (80)</td>
<td>11/16 (68.7)</td>
</tr>
<tr>
<td>Squamous Carcinoma: 4/25 (16)</td>
<td>9/16 (56.25)</td>
<td></td>
</tr>
<tr>
<td>DGRM Status</td>
<td>Mutated: 1/2 (50)</td>
<td>0/16 (0)</td>
</tr>
<tr>
<td>Wild Type: 1 (97.1%)</td>
<td>16 (100%)</td>
<td></td>
</tr>
<tr>
<td>ICL1 percentage</td>
<td><1%: 3/4 (62.5)</td>
<td>1/4 (25%)</td>
</tr>
<tr>
<td>1%<s≤10%: 15/16 (93.75%)</td>
<td>4/16 (25)</td>
<td></td>
</tr>
<tr>
<td>>10%: 16/16 (100%)</td>
<td>12 (75%)</td>
<td></td>
</tr>
<tr>
<td>Immunotherapeutic Agent</td>
<td>Pembrolizumab: 16/16 (100%)</td>
<td>12/16 (75%)</td>
</tr>
<tr>
<td>Nivolumab: 16/16 (100%)</td>
<td>12/16 (75%)</td>
<td></td>
</tr>
<tr>
<td>Keytruda: 1 (6.25%)</td>
<td>1 (6.25%)</td>
<td></td>
</tr>
<tr>
<td>Line of immunotherapy</td>
<td>Induction: 15/16 (93.75%)</td>
<td>12/16 (75%)</td>
</tr>
<tr>
<td>Pro: 1/16 (6.25%)</td>
<td>4/16 (25%)</td>
<td></td>
</tr>
<tr>
<td>OSI</td>
<td>16 (100%)</td>
<td>12 (75%)</td>
</tr>
</tbody>
</table>

ICI immunotherapy affects the blood immune landscape in non-prosger NSCLC patients.

- Our results confirmed LIP1 as a predictive score for ICI treatment in patients with NSCLC [Figure 1].

- Using t-distributed stochastic neighbor embedding (t-SNE) analysis, we demonstrated that NP patients at T1 showed an increased frequency of specific subsets of T cells and a contraction of monocytes [Figure 2].

- Moreover, a reduction of IL-6 level was detected in NP patients after ICI treatment.

Results

ICI immunotherapy modifies immune-suppressive features of c-FLIP+ M-MDSCs.

- Interestingly, we identified a contraction of c-FLIP-expressing M-MDSCs in NP patients at T1 even if NP and prosger (P) patients had the same frequency of this circulating myeloid cell subset at T0.

- Monocytes isolated from both P and NP patients displayed similar immunosuppressive function at T0 but this pro-tumor activity was negatively influenced by c-FLIP-expressing cells contraction at T1 in NP patient cohort [Figure 3].

Conclusion

- To our knowledge, this is the first prospective study to evaluate the effects of ICI therapy on modulating MDSC-associated immunosuppression and inflammation.

- Our study sheds light on the effects of ICI on an MDSC subset in patients with NSCLC.

- FLIP-expressing monocyte enumeration may be considered, after validation, as an adjunctive tool for cancer immunotherapy since they effectively stratify progressors and non-progressors.

References

All authors declare no conflict of interests related to this study.

Mail to: lorenzo.belluomini@univr.it