Background

- Programmed death-ligand 1 (PD-L1) expression is a predictive marker for immune checkpoint inhibitors (ICI) treatment in urothelial carcinoma (UC).
- The combined positive score (CPS) is a method to evaluate the expression level of PD-L1 in UC.
- Recently, artificial intelligence (AI) algorithms have been applied to pathology reading or interpretation and have reported pathologist-level performance.
- This study aimed to evaluate the performance of an artificial intelligence (AI)-powered PD-L1 CPS analyzer on UC compared to the pathologists.

Methods

- Lunit SCOPE PD-L1 CPS was developed with 3.02 x 10^5 tumor cells and 3.49 x 10^5 immune cells from PD-L1 immunohistochemistry-stained whole-slide images (WSI) of UC from multiple institutions, annotated by 94 pathologists.
- The tissue area segmentation and cell detection AI models were developed based on a semantic segmentation algorithm, which includes an atrous spatial pyramid pooling block.
- To validate the model, a total of 543 PD-L1 stained UC WSIs were obtained from three university hospitals (Seoul National University Bundang Hospital [n = 245], Ewha Womans University Mokdong Hospital [n = 205], and Boramae Medical center [n = 93] in each).
- Three uropathologists evaluated slide-level CPS and assigned CPS high or low (10% cutoff value). The agreement (high or low) or correlation (continuous value) of CPS between the pathologists and the AI prediction was evaluated.

Results

- All pathologists agreed on the CPS level in 446 out of 543 cases (82.1%). The agreement or correlation between either of the two pathologists was 87.1%–89.9% (Table 1).
- AI model accuracy compared to pathologists’ consensus was 88.8%, and the Intraclass correlation coefficient (ICC) value between the AI model CPS value and the average CPS value of pathologists was 0.94 (95% confidence interval [CI] 0.93–0.95) (Table 1, Figure 1).
- The performance of the AI model was similar with each individual pathologist (accuracy / ICC, 85.1% / 0.93–0.95, 86.6% / 0.90 [0.87–0.92], and 87.1% / 0.93 [0.92–0.94], respectively) (Figure 2) and individual hospital dataset (89.4% / 0.92 [0.90–0.94], 87.8% / 0.95 [0.93–0.97], and 89.2% / 0.92 [0.87–0.95], respectively) (Figure 3).
- Comparison of CPS evaluation between each pathologist or between pathologists and the AI model was evaluated.

Table 1. Comparison of CPS evaluation between each pathologist or between pathologists and the AI model

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Agreement (more than CPS 10 or not)</th>
<th>Correlation (Intraclass coefficient [2,k], 95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pathologists’ consensus vs. AI model</td>
<td>88.8%</td>
<td>0.94 (0.93–0.95)</td>
</tr>
<tr>
<td>Pathologist A vs. B</td>
<td>87.1%</td>
<td>0.91 (0.90–0.93)</td>
</tr>
<tr>
<td>Pathologist A vs. C</td>
<td>89.9%</td>
<td>0.96 (0.96–0.97)</td>
</tr>
<tr>
<td>Pathologist B vs. C</td>
<td>87.3%</td>
<td>0.92 (0.90–0.93)</td>
</tr>
</tbody>
</table>

Figure 1. CPS value between the average of pathologists and the AI model

Figure 2. CPS value between each pathologist and the AI model

Figure 3. CPS value comparison in individual hospital dataset

Conclusion

- This study demonstrates that an AI-powered PD-L1 CPS analyzer can classify CPS levels in UC comparable to pathologists.

Reference


Demo

- Lunit SCOPE PD-L1 CPS was developed with 3.02 x 10^5 tumor cells and 3.49 x 10^5 immune cells from PD-L1 immunohistochemistry-stained whole-slide images (WSI) of UC from multiple institutions, annotated by 94 pathologists.
- The tissue area segmentation and cell detection AI models were developed based on a semantic segmentation algorithm, which includes an atrous spatial pyramid pooling block.
- To validate the model, a total of 543 PD-L1 stained UC WSIs were obtained from three university hospitals (Seoul National University Bundang Hospital [n = 245], Ewha Womans University Mokdong Hospital [n = 205], and Boramae Medical center [n = 93] in each).
- Three uropathologists evaluated slide-level CPS and assigned CPS high or low (10% cutoff value). The agreement (high or low) or correlation (continuous value) of CPS between the pathologists and the AI prediction was evaluated.

Schematic workflow of AI model development and uropathologist reader study

Cell Detection AI Model

- CPS calculation + 50x PD-L1 staining cells (tumor cells, lymphocytes, macrophages) / Total visible tumor cells

Area Segmentation AI Model

- Urothelial carcinoma slide

Pathologist result on external validation set, compared to uropathologists

- SKMBC: n = 245
- Ewha: n = 205
- Boramae: n = 93
- Total: n = 543