Serum-based colorectal cancer detection using orphan noncoding RNAs

Hani Goodarzi¹, Jeffrey Wang², Oluwadamilare I. Afolabi², Lisa Fish², Helen Li², Kimberly H. Chau², Patrick Arensdorf², Fereydoun Hormozdiari², Babak Alipanahi²

X Exai Bio

Background

- Small non-coding RNAs (sncRNAs) have established roles as posttranscriptional regulators of cancer pathogenesis.
- We previously reported a novel and previously unannotated class of sncRNAs that were found in breast cancer tissue but not in normal tissue adjacent to the tumor, which we termed orphan non-coding RNAs (oncRNAs).¹ Since then, we have identified and validated novel oncRNAs in multiple cancer tissues, using data from The Cancer Genome Atlas (TCGA) and other independent cohorts.²
- We recently showed that these oncRNAs can also be detected in sera and demonstrated prognostic value for treatment response among breast cancer patients.³
- Early detection of colorectal cancer (CRC) can drastically improve survival odds, reduce treatment complexity and side effects, and improve patient quality of life.4
- We hypothesize that oncRNAs can be used as biomarkers in a liquid biopsy strategy to detect CRC across a range of cancer stages and tumor sizes.

Goals

Develop and validate a methodology that uses machine learning (ML) to accurately predict CRC status based on oncRNA profiles detected in patient sera.

Samples

- Our study cohort consists of 191 frozen serum samples from clinically diagnosed colorectal cancer patients (*n*=96) and age- and sex-matched individuals from the general population with no known diagnosis of cancer (n=95). Samples were acquired from three commercial biobanks and processed for small RNA (smRNA) sequencing. Dates of blood draw for serum collection range from 2009 to 2022.
- Subjects were treatment-naive at sample collection and were selected to represent all stages of CRC (I-IV) as well as a broad range of ages of onset, including patients <45 years old.
- Patients had provided informed consent and contributing centers had obtained IRB approval.

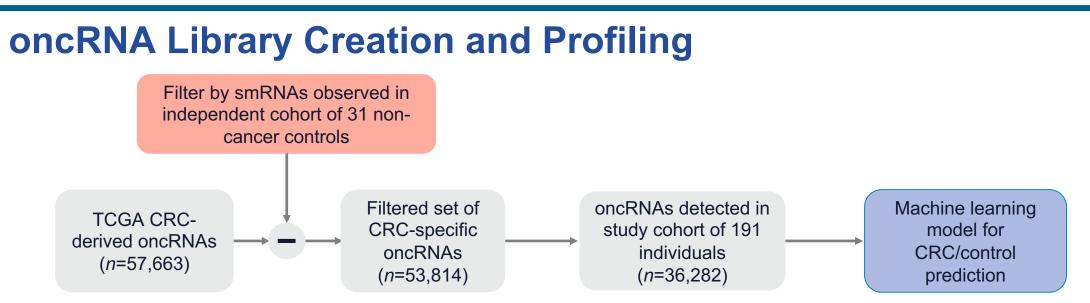
Methods

- RNA was extracted from frozen serum samples of \leq 1.0ml volume and prepared for sequencing. Sample libraries were sequenced to an average depth of 18.8 million 50 bp single-end reads per sample.
- oncRNAs were previously identified in multiple cancer tissues, using data from TCGA as a discovery cohort. Of this multicancer library of oncRNAs, 57,663 were significantly present in TCGA CRC samples. To refine our TCGA library of CRC-associated oncRNAs for applications in serum, we filtered out smRNA sequences found in sera of an independent non-cancer control cohort (*N*=31). OncRNAs that were detected in more than one control serum sample were filtered out, yielding a final set of 53,814 CRC-significant oncRNAs.
- This filtered library of oncRNAs was used as a reference to generate oncRNA expression profiles by cataloguing and quantifying oncRNAs for each individual serum sample (N=191).
- These oncRNA expression profiles were used to build an ensemble of logistic regression models to make predictions of CRC vs. control. The ensemble model was trained and evaluated using a 5-fold cross-validation setup. Within each training fold only oncRNAs observed in >4% of samples and yielding an odds ratio for CRC >1 were used to train and validate the model.

	i
d	TCGA CI lerived onc (<i>n</i> =57,66
Stu	dy Co
	Age (me
	4
	5

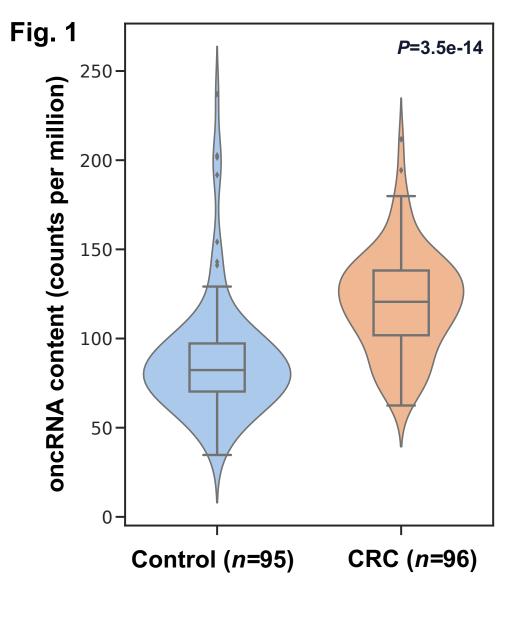
	>
Sex	(n)

Fer Cancer

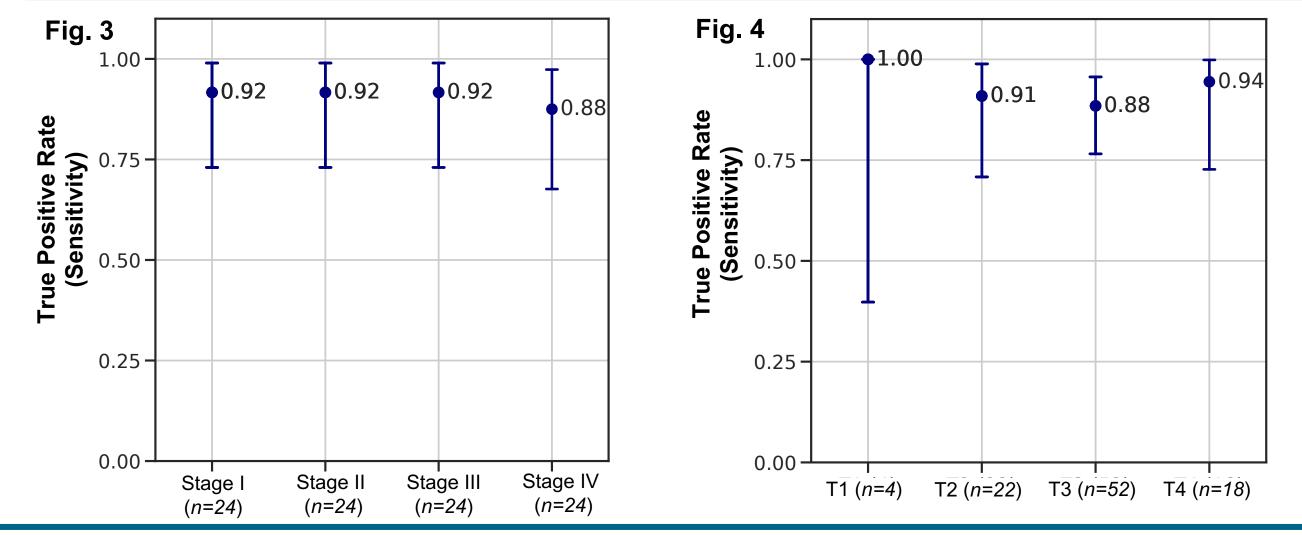


Result 1: oncRNA Content Differentiates Cancer Status

Figure 1. oncRNA Content in **Cancer and Control Samples**

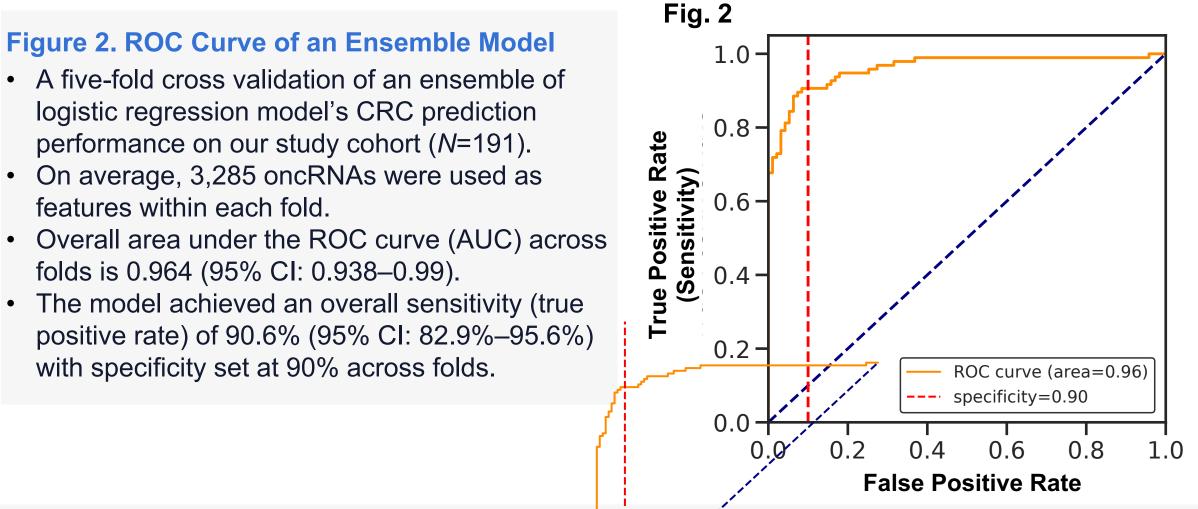

- Of the 53,814 TCGA CRCspecific oncRNA species, 36,282 (67.4%) were observed in the study cohort (N=191). Total sequencing depthnormalized oncRNA content, the aggregate count of all detected oncRNAs within each sample, was significantly higher in cancer samples (one-sided Mann-Whitney U test, P=3.5e-14).

UCSF School of Medicine, University of California, San Francisco, CA, Exai Bio Inc., Palo Alto, CA


ohort

	Non-cancer Controls (<i>n</i> =95)	Colorectal Cancer Cases (<i>n</i> =96)
ean ± std)	52.8 (±14.9)	53.8 (±12.4)
<45	24	24
5–55	24	24
5–65	24	24
>65	23	24
Male	48	48
emale	47	48
Stage (n)		
1	NA	24
П	NA	24
Ш	NA	24
IV	NA	24

Result 2: Prediction of Colorectal Cancer Status


Figures 3 & 4. Sensitivities for CRC Detection by Cancer Stage (I–IV) and Tumor T Category (T1–T4)

Conclusion

- (T1–T4).
- workflows.

• For each subgroup, using the model, sensitivity was calculated with specificity set at 90% (based on recent CMS reimbursement publication). 95% confidence intervals were calculated using the Clopper-Pearson method. Sensitivities for CRC detection were similar and high across all stages and tumor T categories.

Analyzing oncRNA data with machine learning models accurately predicted colorectal cancer (CRC) across all cancer stages (I–IV) and tumor categories

This oncRNA-based liquid biopsy technology is compatible with standard sample requirements enabling integration into conventional clinical

The results will be validated prospectively in further population studies.

Disclosure: JW, OA, LF, HL, KC, FH are full-time employees of Exai Bio. BA and PA are cofounders, stockholders, and full-time employees of Exai Bio. HG is co-founder, stockholder, and advisor of Exai Bio.

leference

- Fish L., et al. Nature Med. 2018;24:1743-51.
- 2. Wang J, et al. AACR. 2022; 3353.
- Navickas A., et al. SABCS. 2021; PD9-04.
- 4. Xi Y., et al. Transl Oncol. 2021;14(10):101174

