Osimertinib for RT-naïve CNS Metastasis of EGFR mutation positive NSCLC: phase II OCEAN Study 990P (LOGIK 1603/WJOG 9116L), Part of the first-line cohort.

¹Clinical Oncology Center, Nagasaki University Hospital, Nagasaki, Japan, ³Cancer Treatment Center, Nagasaki, Japan, ⁴Respiratory Center, Matsusaka Municipal Hospital, Matsusaka, Japan, ⁵Department of Respiratory Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan, ⁶Department of Respiratory Medicine, Japan, ⁸Department of Respiratory Medicine, Japan, ⁸Department of Medical Oncology, Osaka City General Hospital, Osaka, Japan, ⁹Department of Respiratory Medicine, Japan, ⁸Department of Respiratory Medical Oncology, Osaka City General Hospital, Osaka, Japan, ⁹Department of Respiratory Medicine, Japan, ⁹Department, ⁹Department Of Internal Medicine, Niigata Cancer Center Hospital, Niigata, Japan, ¹⁰Department of Respiratory Medicine, Saga university, Saga, Japan, ¹²Department of Respiratory Medicine, Saga university, Saga, Japan, ¹²Department of Respiratory Medicine, Saga university, Saga, Japan, ¹⁴Department of Respiratory Medicine, Saga university, Saga, Sag National Hospital Organization Omuta National Hospital, Sendai, Japan, ¹³Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan, ¹⁶Medical National Hospital, Sendai, Japan, ¹⁴Department, Sendai, Japan, ¹⁴Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan, ¹⁶Medical Center for Translational and Clinical Research, Hiroshima University, Wakayama, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Thoracic & Breast Surgery, Oita University Faculty of Medicine, Yufu, Japan, ¹⁹Department of Yufu, ¹⁹Department of Yuf

Background

- Non-small cell lung cancer (NSCLC) with EGFR mutations exhibits a higher incidence (15–30%) of central nervous system (CNS) metastasis¹⁻².
- Although radiotherapy (RT) is a standard treatment for CNS metastasis, it delays the start of systemic chemotherapy, and whole brain RT carries a risk of cognitive dysfunction^{3, 4}.
- Osimertinib is an irreversible EGFR-TKI that selectively inhibits both EGFRsensitizing and T790M mutation.
- Osimertinib achieved greater penetration into the brain in a preclinical model⁵.
- The aim of the study was to assess osimertinib for patients with RT-naïve CNS metastasis of *EGFR* mutations positive NSCLC.
- We previously reported the results of *T790M* cohort⁶, here we show the results of first-line cohort.

Methods

Study design

	Single-arm phase II trial	sponsored by As
 ≥ 20 years old •ECOG PS 0–2 •NSCLC •EGFR Del19 or L858R (- 	T790M cohort (n = 40) ✓ Pretreated with EGFR-TKI ✓ EGFR T790M-positive	Osimertinib
 •brain metastasis (BM) ≥5 mm long axis •No prior RT for BM 	 First-line cohort (n = 25) ✓ Not treated with EGFR-TKI ✓ Stage IV / postoperative relapsed 	

• Brain MRI and chest/abdomen CT were performed every 6 weeks in the first year and every 3 months thereafter.

Primary endpoint

• Response rate of brain metastasis (BMRR) assessed by PAREXEL criteria ⁷						
	Cohort	Threshold value	Expected value	one sided α	power	n
	T790M	50%	70%	0.05	0.8	40
	First-line	55%	80%	0.05	0.8	25

*We set a threshold and an expected value at 50% and 70%, respectively, on the basis of the AURA trial (BMRR 61%, 95% CI = 52-70%)⁸ in T790M cohort. In the first line cohort, we set a threshold and an expected value at 55% and 80%, respectively.

Secondary endpoint

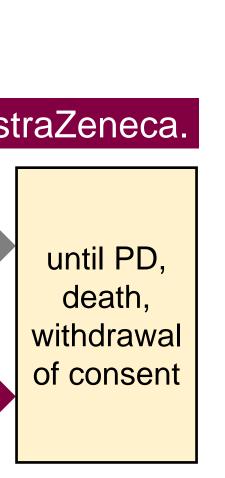
- BMRR (RECIST), PFS of BM, ORR, safety, PFS, OS
- BMRR (PAREXEL criteria), PFS, OS in the first-line cohort

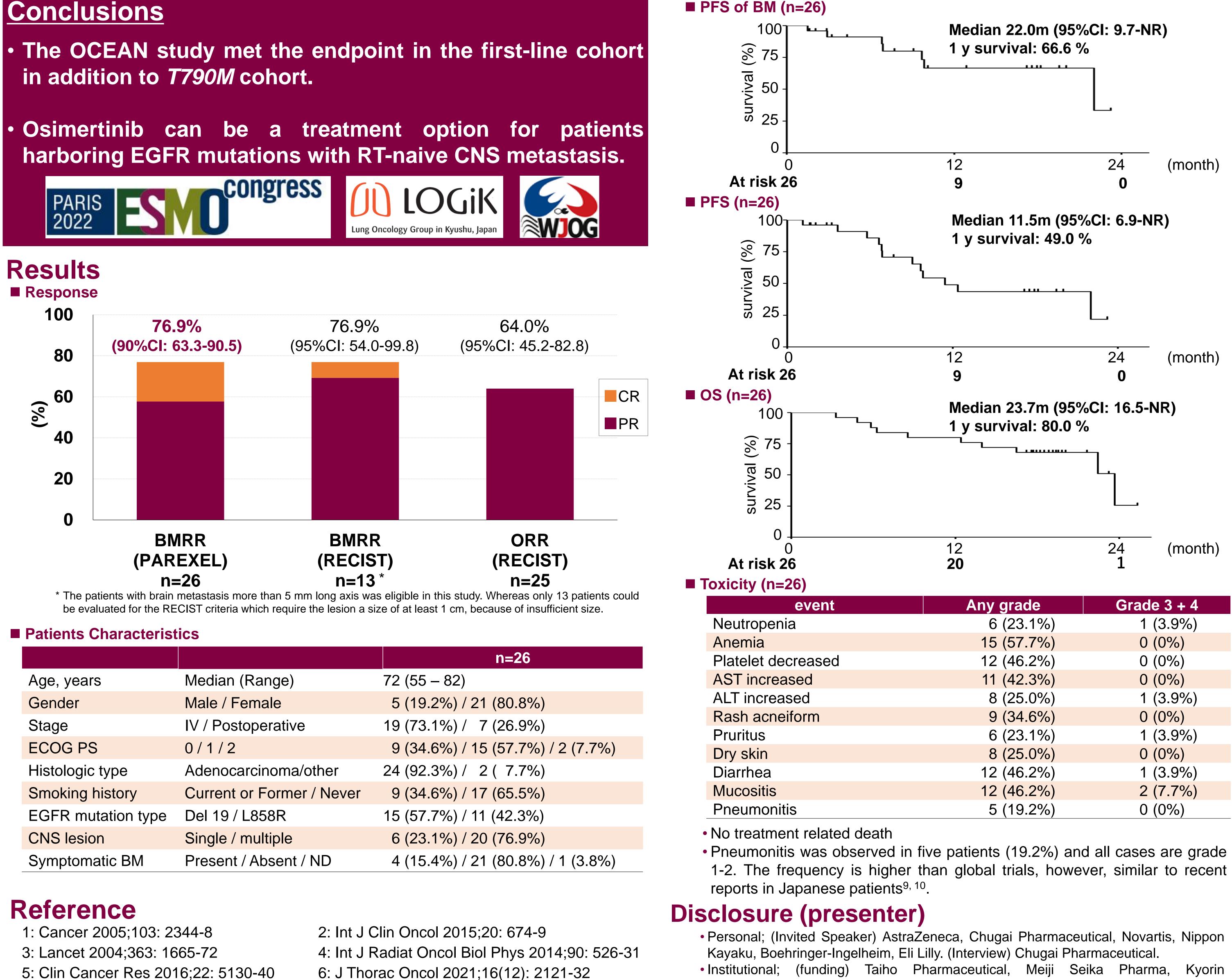
Exploratory endpoints

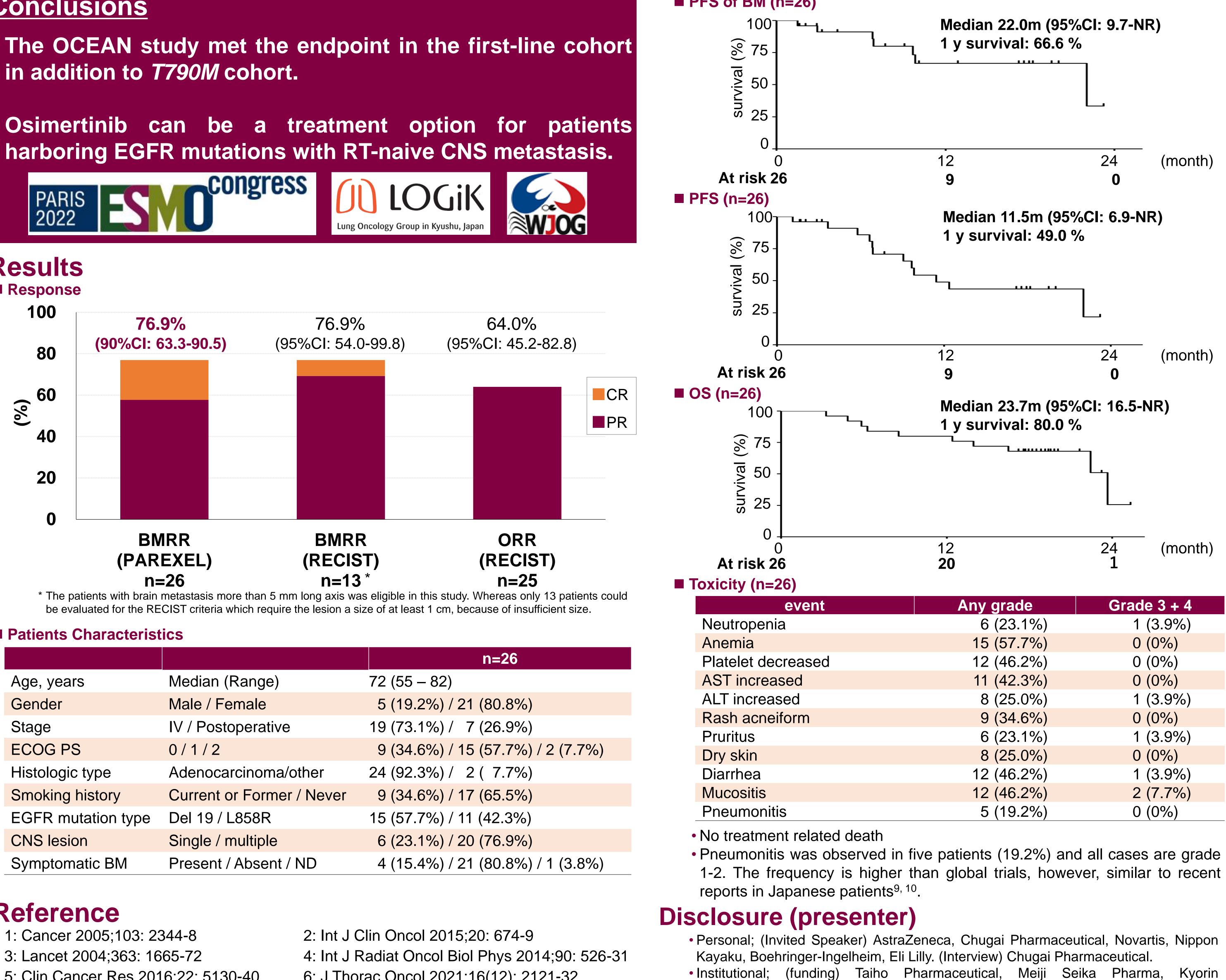
- plasma concentration (in a steady state, day22) of osimertinib
- CSF penetration of osimertinib
- EGFR mutation analysis in plasma

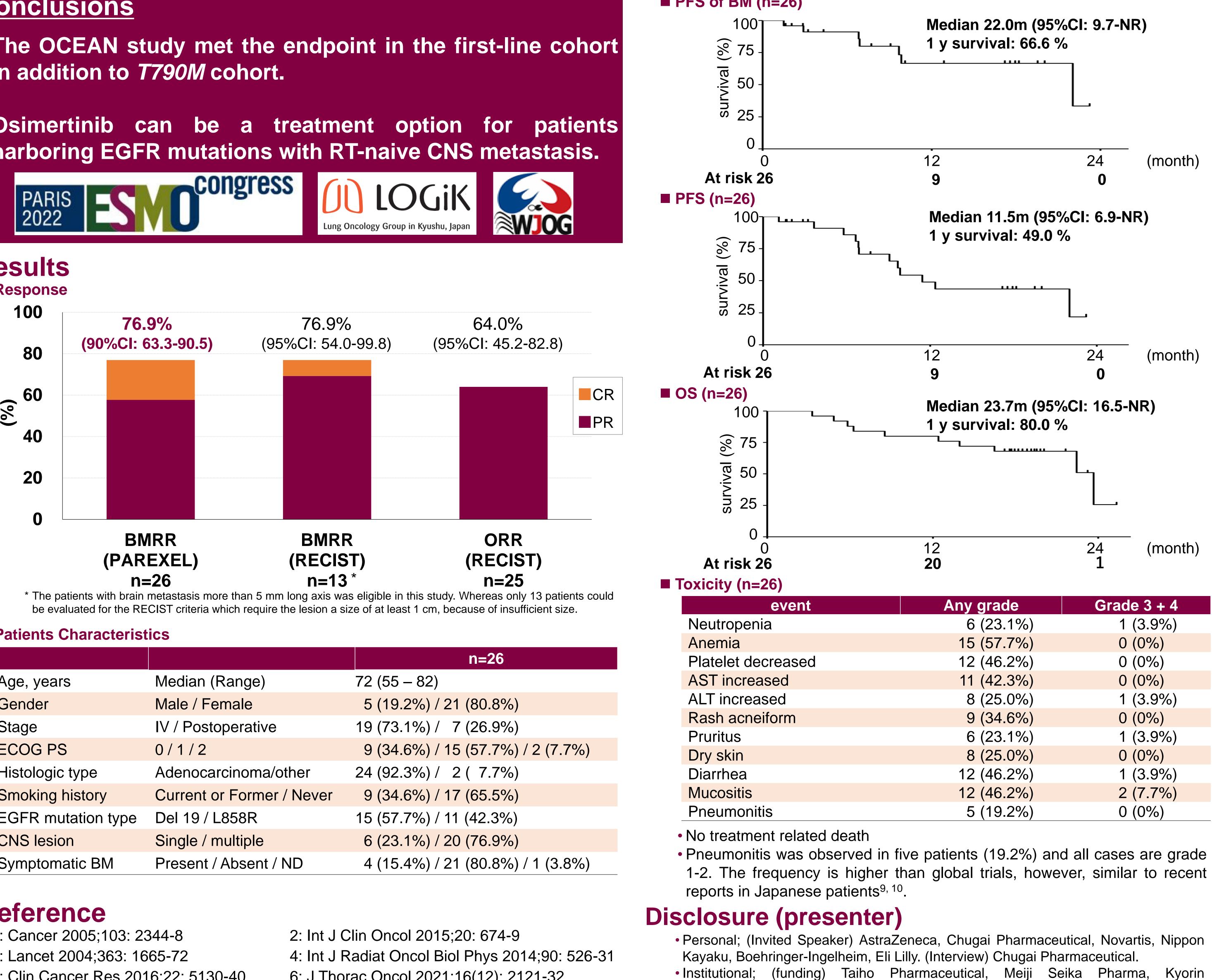
PAREXEL criteria

A tool for assessing BM used in several recent trials.


 BM response is assessed more closely than the RECIST criteria. 					
	criteria	Slice Thickness of	Target lesion		non-targ
		MRI or CT	Size	maximum number	Si
	PAREXEL	≤3mm (MRI)	≥5mm	5	<5r
	RECIST	≤5mm (CT or MRI)	≥10mm	2 (one organ)	<10


Key exclusion criteria


- Symptomatic BM requiring radiotherapy or surgical resection.
- BM requiring emergent therapy.
- Prior treatment with anti-PD-1/PD-L1/CD137/CTLA-4 antibody.
- History of interstitial lung disease (ILD), drug-induced ILD, and radiation pneumonitis requiring steroid.


Hiroyuki Yamaguchi¹, Kazushige Wakuda², Minoru Fukuda³, Hirotsugu Kenmotsu², Kentaro Tanaka⁶, Taishi Harada⁷, Yuki Nakatani⁸, Satoru Miura⁹, Toshihide Yokoyama¹⁰, Tomomi Nakamura¹¹, Miiru Izumi¹², Atsushi Nakamura¹³, Kenichi Yoshimura¹⁶, Kazuhiko Nakagawa¹⁷, Nobuyuki Yamamoto¹⁸, Kenji Sugio¹⁹

Conclusions

Age, years	Median (Range)	72
Gender	Male / Female	5
Stage	IV / Postoperative	19
ECOG PS	0/1/2	9
Histologic type	Adenocarcinoma/other	24
Smoking history	Current or Former / Never	9
EGFR mutation type	Del 19 / L858R	15
CNS lesion	Single / multiple	6
Symptomatic BM	Present / Absent / ND	4

- 5: Clin Cancer Res 2016;22: 5130-40 7: www.calyx.ai/library/brain-metastases-from-solid-tumors-implementing-response-assessments/
- 8: N Engl J Med 2015;372: 1689–99
- 10: Chest. 2022;S0012-3692(22): 01068-6

9: Ann Oncol 2021;32: S1322-3

Pharmaceutical, Asahi Kasei Pharma, Torii Pharmaceutical, Chugai Pharmaceutical, Boehringer-Ingelheim, Eli Lilly, Nippon Kayaku, Shionogi, Janssen Pharmaceutical, Otsuka Pharmaceutical, Taisho Pharmaceutical, Teijin Pharma, Eisai, Ono Pharmaceutical, Fujifilm Toyama Chemical.

8 (25.0%)	1 (3.9%)
9 (34.6%)	0 (0%)
6 (23.1%)	1 (3.9%)
8 (25.0%)	0 (0%)
12 (46.2%)	1 (3.9%)
12 (46.2%)	2 (7.7%)
5 (19.2%)	0 (0%)