Monitoring immune checkpoint inhibition in advanced solid tumors using genome-wide cfDNA fragmentomes

Jamie E. Medina,* Enchanti T. Rosas-Torres,‡ Alejandro Leal,* Yvonne Adelf,⁎ Keith Lumbard,⁎ Lauren Keifer,⁎ Jacob Carey,⁎ Adam Brufsky,* Patricia Loussas,* Joseph Paul Eder,* Vincent Chung,* Melinda Downs, Ashley O’Connor, Richard Piekarz,7 Howard Streicher, Elizabeth M. Jaffee, Robert B. Scharpf, Vered Stearns, Roisin M. Connolly,⁎ Victor E. Velculescu,* Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Delfi Diagnostics, Inc., Baltimore, MD, USA; 4University of Pittsburgh Cancer Institute and UPMC Cancer Center, Pittsburgh, PA, USA; 5Tisch Cancer Institute and Memorial Sloan Kettering Cancer Center, New York, NY, USA; 6Cancer Institute at Hackensack University Medical Center, Hackensack, NJ, USA; 7SUNY Downstate Medical Center, Brooklyn, NY, USA.⁎ Indicates contributor to the study design, data analysis, or writing. 7Holds stock in Advaxis Inc. All other authors declare no competing interests. Funding: This work was supported by a grant from the National Institutes of Health (CA176474) and the John E. and Dorothy L. Rubenstein Foundation (to V. E. V.). Presented at ESMO Congress 2022; 9–13 September 2022; Paris, France.

Our analyses provide a proof-of-concept framework that a cfDNA fragmentome-based approach may have broad applicability in the setting of monitoring patients receiving immunotherapies.