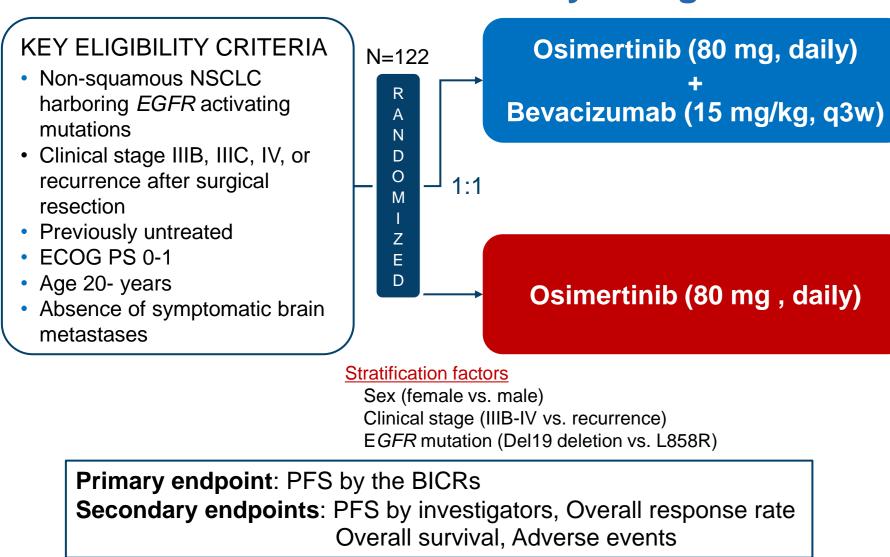
Atsushi Nakamura<sup>1</sup>, Hirotsugu Kenmotsu<sup>2</sup>, Kazuko Sakai<sup>3</sup>, Keita Mori<sup>4</sup>, Terufumi Kato<sup>5</sup>, Keisuke Kirita<sup>6</sup>, Yasuto Yoneshima<sup>7</sup>, Koichi Azuma<sup>8</sup>, Kazumi Nishino<sup>9</sup>, Shunsuke Teraoka<sup>10</sup>, Takehito Shukuya<sup>11</sup>, Ken Masuda<sup>12</sup>, Hidetoshi Hayashi<sup>13</sup>, Ryo Toyozawa<sup>14</sup>, Satoru Miura<sup>15</sup>, Daichi Fujimoto<sup>16</sup>, Kazuhiko Nakagawa<sup>13</sup>, Nobuyuki Yamamoto<sup>10</sup>, Kazuto Nishio<sup>3</sup>, Toshiaki Takahashi<sup>2</sup>

<sup>1</sup>Department of Pulmonary Medicine, Sendai Kousei Hospital, <sup>2</sup>Division of Thoracic Oncology, Shizuoka Cancer Center, <sup>3</sup>Department of Genome Biology, Kindai University Faculty of Medicine, <sup>4</sup>Clinical Trial Coordination Office, Shizuoka Cancer Center, <sup>5</sup>Department of Thoracic Oncology, Kanagawa Cancer Center, <sup>6</sup>Department of Thoracic Oncology, National Cancer Center Hospital East, <sup>7</sup>Department of Respiratory Medicine, Graduate School of Medicine, Sciences, Kyushu University, 8Division of Respiratory Medicine, Graduate School of Medicine, Graduate School of Medicine, Graduate School of Medicine, Sciences, Kyushu University, 8Division of Respiratory Medicine, Graduate School of Medicine, Graduate School of Medicine, Graduate School of Medicine, Sciences, Kyushu University, 8Division of Respiratory Medicine, Graduate School of Medicine, Graduate School Osaka International Cancer Institute, 10Internal Medicine III, Wakayama Medical University, 11Department of Respiratory Medicine, Hiroshima Citizens Hospital, 13Department of Medical Oncology, Kindai University Faculty of Medicine, 14Department of Respiratory Medicine, Juntendo University, 12Department of Respiratory Medicine, 14Department of Respiratory Medicine, Juntendo University, 12Department of Respiratory Medicine, 14Department of Respiratory Medicine, Juntendo University, 12Department of Respiratory Medicine, 14Department of Respiratory Medicine, Juntendo University, 12Department of Respiratory Medicine, Juntendo University, 14Department of Respiratory Medicine, Juntendo U Thoracic Oncology, National Hospital Organization Kyushu Cancer Center, <sup>15</sup>Department of Internal Medicine, Niigata Cancer Center Hospital, <sup>16</sup>Department of Respiratory Medicine, Kobe City Medical Center General Hospital



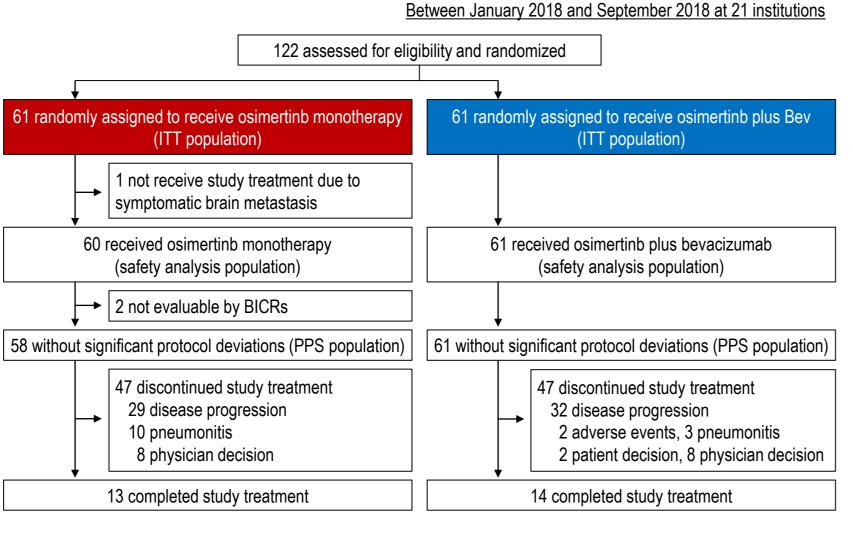

# **Background**

- Previous studies showed that the addition of anti-VEGF inhibitors to erlotinib prolonged progression-free survival in EGFR mutated non-squamous non-small-cell lung cancer (Ns-NSCLC) patients.
- The primary results of WJOG9717L study, open-label, randomized phase II trial comparing osimertinib plus bevacizumab with osimertinib monotherapy for untreated patients with advanced EGFR mutated Ns-NSCLC, were reported at ESMO2021.

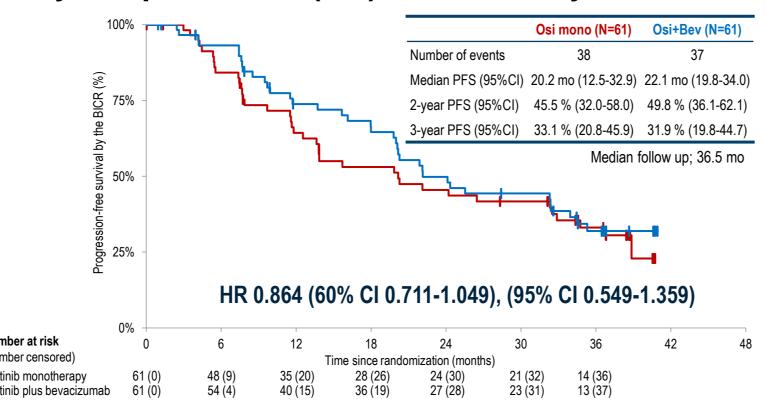
## **Methods**

# WJOG9717L: Study Design




Clinical trial information: UMIN000030206

### **Statistical Considerations**


- The planned total sample size was 120 patients.
- We assumed the median PFS with osimertinib monotherapy as 18 months and expected as 27 months for osimertinib plus bevacizumab, with HR 0.67.
- One-sided  $\alpha$  = 0.20, a power of 80%, an expected accrual period of 1.5 years, and a follow-up period of 2 years.
- This final analysis were performed at the data cut-off, 31th July 2021.

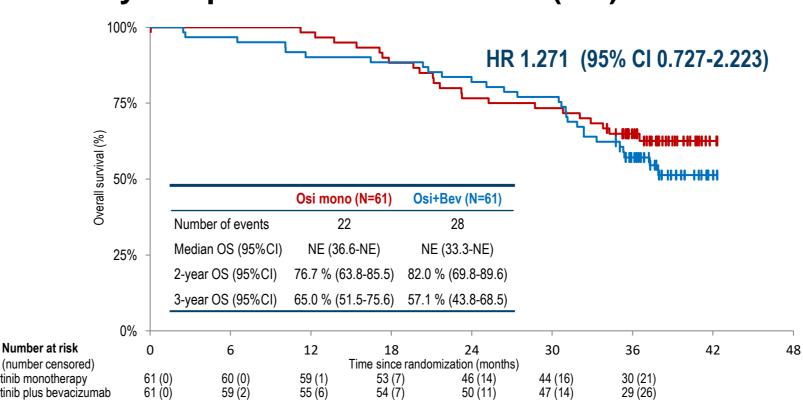
### Results

#### **Disposition of Study Treatment**



### Primary Endpoint: PFS (ITT), assessed by BICRs




## **Safety summary**

|                                               | Osimerti | nib monotherapy<br>(N=60) | Osimertinib plus bevacizumab (N=61) |               |  |
|-----------------------------------------------|----------|---------------------------|-------------------------------------|---------------|--|
| Median duration of osimertinib (weeks)(range) | 57.6     | (1.4 - 183.6)             | 94.0                                | (1.6 - 183.6) |  |
| Median duration of bevacizumab (weeks)(range) | -        |                           | 33.4                                | (3.0 - 159.0) |  |
| Grade 3-5 adverse events (AEs)                | 29       | (48.3 %)                  | 35                                  | (57.4 %)      |  |
| Serious adverse events (SAEs)                 | 13       | (21.7 %)                  | 21                                  | (34.4 %)      |  |
| AEs leading to treatment discontinuation      | 16       | (26.7 %)                  | 37                                  | (60.7 %)      |  |
| SAEs leading to treatment discontinuation     | 4        | (6.7 %)                   | 8                                   | (13.1 %)      |  |
| AEs leading to dose modification              | 24       | (40.0 %)                  | 39                                  | (63.9 %)      |  |
| AEs leading to dose reduction                 | 0        | -                         | 3                                   | (4.9 %)       |  |
| AEs leading to treatment-related death        | 0        | -                         | 1                                   | (1.6 %)       |  |

#### **Baseline Characteristics**

|                             |                                     | (N=61) |           | (1 | N=61)     |
|-----------------------------|-------------------------------------|--------|-----------|----|-----------|
| Age (years)                 | median (range)                      | 66     | (29 - 85) | 67 | (41 - 86) |
| Sex                         | Male                                | 23     | (37.7 %)  | 24 | (39.3 %)  |
|                             | Female                              | 38     | (62.3 %)  | 37 | (60.7 %)  |
| Smoking                     | Never                               | 30     | (49.2 %)  | 38 | (62.3 %)  |
|                             | Ever                                | 31     | (50.8 %)  | 23 | (37.7 %)  |
| ECOG performance status     | 0                                   | 34     | (55.7 %)  | 32 | (52.5 %)  |
|                             | 1                                   | 27     | (44.3 %)  | 29 | (47.5 %)  |
| Histopathological diagnosis | Adenocarcinoma                      | 60     | (98.4 %)  | 61 | (100 %)   |
|                             | Others                              | 1      | (1.6 %)   | 0  | -         |
| Clinical stage              | III                                 | 2      | (3.3 %)   | 1  | (1.6 %)   |
|                             | IV                                  | 46     | (75.4 %)  | 48 | (78.7 %)  |
|                             | Recurrence after surgical resection | 13     | (21.3 %)  | 12 | (19.7 %)  |
| EGFR mutation type          | Deletion in exon 19                 | 36     | (59.0 %)  | 35 | (57.4 %)  |
|                             | Leu858Arg                           | 25     | (41.0 %)  | 26 | (42.6 %)  |

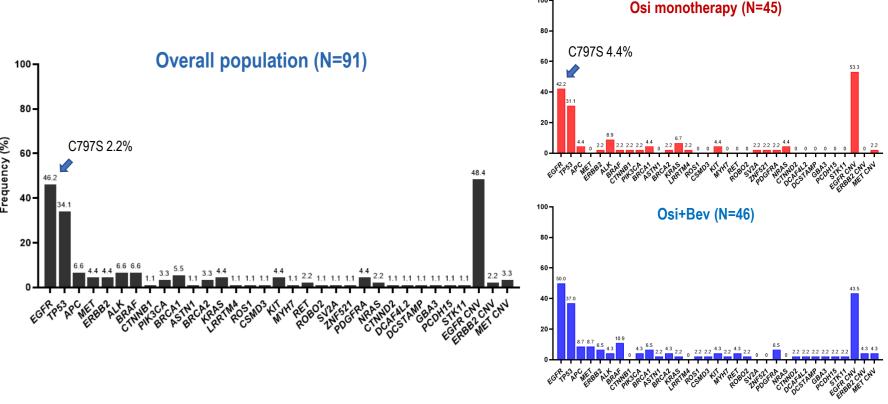
#### **Secondary Endpoint: Overall survival (ITT)**



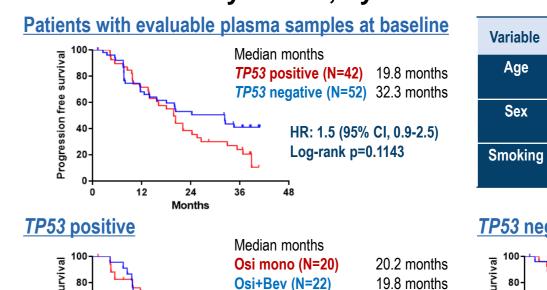
## Summary

- ☐ This study did not show the efficacy of osimertinib plus bevacizumab against osimertinib monotherapy with respect to improving PFS in patients with nonsquamous NSCLC harboring EGFR mutation.
- □ Regardless of TP53 mutation at baseline, there was also no significant difference in updated PFS between two arms.

Funding The study was supported by AstraZeneca K.K Contact E-mail: a.nakamuuu@gmail.com, h.kenmotsu@scchr.jp

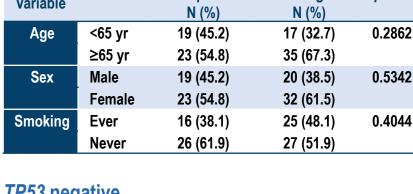

## Biomarker study

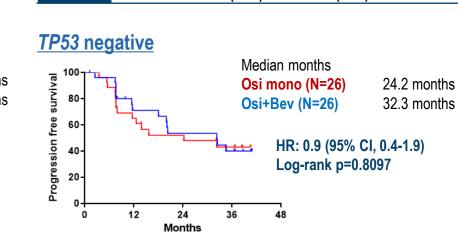
Tissue samples (N=40) and plasma samples (N=94) at baseline were evaluable, and 197 genes were evaluated by targeted deep sequencing.


| Tissue samples at baseline |    |                 |    |                      |    |                     | Plasma samples at baseline |                       |                  |    |                      |         |                     |  |
|----------------------------|----|-----------------|----|----------------------|----|---------------------|----------------------------|-----------------------|------------------|----|----------------------|---------|---------------------|--|
|                            |    | cases<br>40 (%) |    | Osi mono<br>N=22 (%) |    | Osi+Bev<br>N=18 (%) |                            | All cases<br>N=94 (%) |                  |    | Osi mono<br>N=46 (%) |         | Osi+Bev<br>N=48 (%) |  |
| EGFR                       | 38 | (95.0)          | 21 | (95.5)               | 17 | (94.4)              | EGFR                       | 72                    | (76.6)           |    | (84.8)               | 33      |                     |  |
| TP53                       | 20 | (50.0)          | 11 | (50.0)               | 9  | (50.0)              | TP53<br>APC                | 11                    | (44.7)<br>(11.7) |    | (50.0)<br>(8.7)      | 19<br>7 | (39.6) (14.6)       |  |
| APC                        | 3  | (7.5)           | 2  | (9.1)                | 1  | (5.6)               | MET<br>ERBB2               |                       | (9.6)            | 4  | (8.7)<br>(4.3)       | 5<br>4  | (10.4)              |  |
| ALK                        | 1  | (2.5)           | 1  | (4.5)                | 0  | (0.0)               | ALK                        |                       | (5.3)            |    | (8.7)                |         | (2.1)               |  |
| BRAF                       | 1  | (2.5)           | 0  | (0.0)                | 1  | (5.6)               | BRAF<br>CTNNB1             |                       | (5.3)<br>(5.3)   |    | (4.3)<br>(6.5)       | 3       | (6.3)<br>(4.2)      |  |
| CTNNB1                     | 2  | (5.0)           | 1  | (4.5)                | 1  | (5.6)               | PIK3CA                     | 5                     | (5.3)            | 3  | (6.5)                | 2       | (4.2)               |  |
| KRAS                       | 1  | (2.5)           | 0  | (0.0)                | 1  | (5.6)               | BRCA1 ASTN1                |                       | (4.3)<br>(2.1)   |    | (4.3)<br>(2.2)       | 1       | (4.2)               |  |
| SLITRK1                    | 1  | (2.5)           | 1  | (4.5)                | 0  | (0.0)               | BRCA2                      | 2                     | (2.1)            | 1  | (2.2)                | 1       | (2.1)               |  |
| PDGFRA                     | 1  | (2.5)           | 1  | (4.5)                | 0  | (0.0)               | KRAS<br>LRFN5              |                       | (2.1)<br>(2.1)   |    | (2.2)                | 1       | (2.1)               |  |
| NRAS                       | 1  | (2.5)           | 1  | (4.5)                | 0  | (0.0)               | LRRTM4                     | 2                     | (2.1)            | 2  | (4.3)                | 0       | (0.0)               |  |
| LRRC7                      | 1  | (2.5)           | 0  | (0.0)                | 1  | (5.6)               | ROS1<br>TRPS1              |                       | (2.1)<br>(2.1)   |    | (4.3)<br>(4.3)       | 0       | (0.0)               |  |
| EGFR CNV                   | 8  | (20.0)          | 4  | (18.2)               | 4  | (22.2)              | EGFR CNV                   | 51                    | (54.3)           | 28 | (60.9)               | 23      | (47.9               |  |
| ERBB2 CNV                  | 3  | ,               | 2  | (9.1)                | 1  | (5.6)               | ERBB2 CNV<br>MET CNV       |                       | (2.1)<br>(19.1)  |    | (4.3)<br>(21.7)      | 0       | (0.0)<br>(16.7      |  |

#### Gene alterations of plasma samples at PD or last dose

Plasma samples (N=91) at PD or last dose were evaluable, and 197 genes were evaluated by targeted deep sequencing.





#### PFS assessed by BICRs, by *TP53* mutation in plasma at baseline



HR: 1.1 (95% CI, 0.5-2.3)

Log-rank p=0.7831



