

Background

Less than 5% of intrahepatic cholangiocarcinomas (iCCA) are tumor mutational burden-high (TMB-H), defined as ≥ 10 mut/Mb. The genomic landscapes of TMB-H versus TMB-low (TMB-L), defined as < 10 mut/Mb, have not been contrasted. Ongoing interest in the development of combination immunotherapy strategies make characterizing the genomic landscape of TMB-H iCCAs clinically relevant.

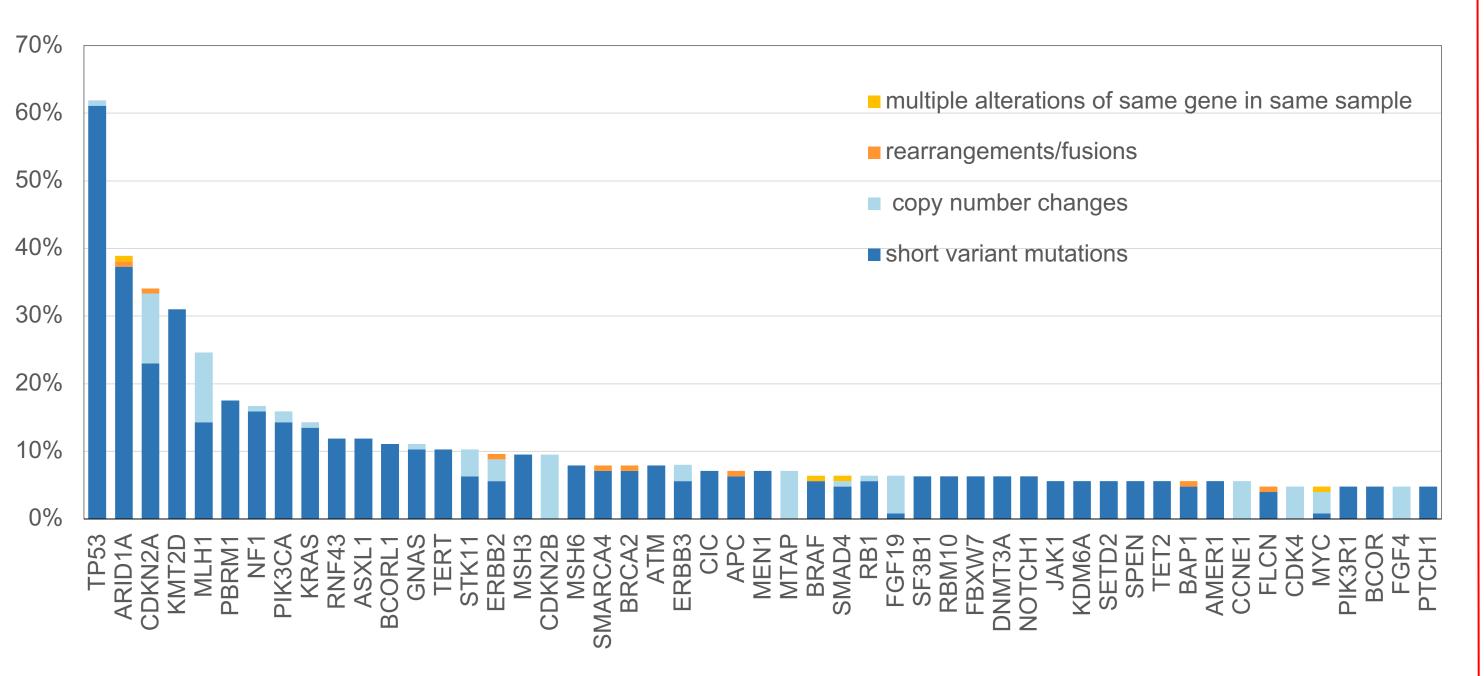
Methods

3,317 cases of iCCA underwent comprehensive genomic profiling with the FoundationOne CDx assay. Prevalence of different genomic alterations in cases with TMB-H were compared against TMB-L using Fischer's exact test.

- \geq 50 ng DNA extracted from 40 µm of FFPE sections
- Sequencing performed for up to 324 cancer-related genes and introns from 28 genes commonly rearranged in cancer
- Hybrid capture-based sequencing using adaptor ligation-based libraries
- Mean coverage depth >600X
- Tumor mutational burden (TMB) calculated from 0.83-1.14 Mb sequenced DNA
- PD-L1 expression was measured by IHC (Dako22C3)

Results

127 (3.9%) of 3,190 cases were TMB-H and of these cases 32.6% were TMB \geq 20 mut/Mb. Compared to TMB-L cases, microsatellite instability (MSI) was higher in TMB-H (35.5% v 0.1%, *p*<.0001), as was high (≥50%) PD-L1 IHC staining (8.9% v 2.9%, p=0.47) and mutations in potential immunotherapy biomarkers *PBRM1* (17.5% v 10.7%, *p*=.028) and *STK11* (10.3% v 2.8%, p=.0001). TMB-H cases have lower frequencies of previously identified iCCA drivers such as FGFR2 fusions (0.8% v 8.2%, p=.0006), IDH1 mutations (1.6% v 14.0%, p<.0001) and IDH2 mutations (0% v 4.3%, p=.01). ERBB2 nonamplification structural variants are also increased (5.6% v 1.1%, p=.0009) in TMB-H. Mutations in genes with roles in genomic stability were increased with *TP53* (61.9% v 34.1%, *p*<.0001) and *ARID1A* (38.9% v 17.8%, *p*<.0001). TMB-H cases had higher mutations in BRCA2 (7.9% v 2.2%, p=.0008) and ATM (7.9% v 3.1%, *p*=.008), but not *BRCA1* (2.4% v 0.8%, NS). In contrast, TMB-L cases have higher incidences of CDKN2B (22.3% v 9.5%, p=.0003) and MTAP mutations (15.4% v 7.1%, *p*=.008).


63P – Intrahepatic Cholangiocarcinoma (iCCA) Genomic Findings with High versus Low Tumor Mutational Burdens

Tin-Yun Tang¹, Jeffrey S. Ross^{2,3}, Jordi Rodon Ahnert¹, Milind Javle¹

¹The University of Texas MD Anderson Cancer Center, ²Upstate Medical University, ³Foundation Medicine Inc.

Clinical and Genomic Fir	ndings in Low (< 10 muta	ations/Mb) and High (<u>></u> 10 m	utations/Mb)				
	Intrahepatic Cholang	iocarcinoma					
	TMB < 10 Mutations/M	b TMB > 10 mutations/Mb	Significance				
Number of Cases	3,190	127					
Males/Females	50%/50%	47%/53%	NS				
Median age (range) years	66 (18-89+)	65 (26-88)					
GA/tumor	4.01	8.72	<.0001				
	Cell Cycle and Surviva	al Regulators					
CDKN2A	30.2%	34.2%	NS				
CDKN2B	22.3%	9.5%	=.0003				
FP53	34.1%	61.9%	<.0001				
FERT	7.9%	10.3%	NS				
ARID1A	17.8%	38.9%	<.0001				
	RAS/RAF Pathwa	iy Genes					
(RAS	20.1%	14.3%	NS				
(RAS G12C	1.0%	0.8%	NS				
BRAF	4.7%	6.4%	NS				
	TK Growth Factor Red	ceptor Genes					
EGFR	2.2%	2.4%	NS				
ERBB2 (amp/sv mut)	3.4%/1.1%	3.2%/5.6%	NS/=.0009				
GFR2 (total/fusions)	10.8%/8.2%	4.0%/0.8%	=.011/=.000				
	Metabolism G	enes					
DH1	14.0%	1.6%	<.0001				
DH2	4.3%	0%	=.01				
ΜΤΑΡ	15.4%	7.1%	=.008				
	PIK3CA-MTOR Path	way Genes					
PTEN	2.7%	4.0%	NS				
NF1	1.9%	16.7%	<.0001				
rsc1	0.9%	2.4%	NS				
PIK3CA	6.1%	15.9%	=.0001				
	MMRD Gen	les					
3RCA1	0.8%	2.4%	NS				
3RCA2	2.2%	7.9%	=.0008				
ATM	3.1%	7.9%	=.008				
	IO Drug Bioma						
PBRM1	10.7%	17.5%	=.028				
STK11	2.8%	10.3%	=.0001				
MDM2	4.0%	3.2%	NS				
MSI High	<0.1% (3,138 cases)	35.5% (110 cases)	P<.0001				
Aedian TMB	2.5	15					
Nean TMB	2.3	20.1	P<.0001				
TMB>10 mut/Mb	0%	100%					
MB>20 mut/Mb	0%	32.6%					
PD-L1 Low Positive	21.6% (1,118 cases)	22.2% (45 cases)					
PD-L1 High Positive	2.9%	8.9%					
	2.0/0	0.070					

Figure 1: Long Tail Plot of Genomic Alterations in iCCA with TMB ≥ 10 mut/MB

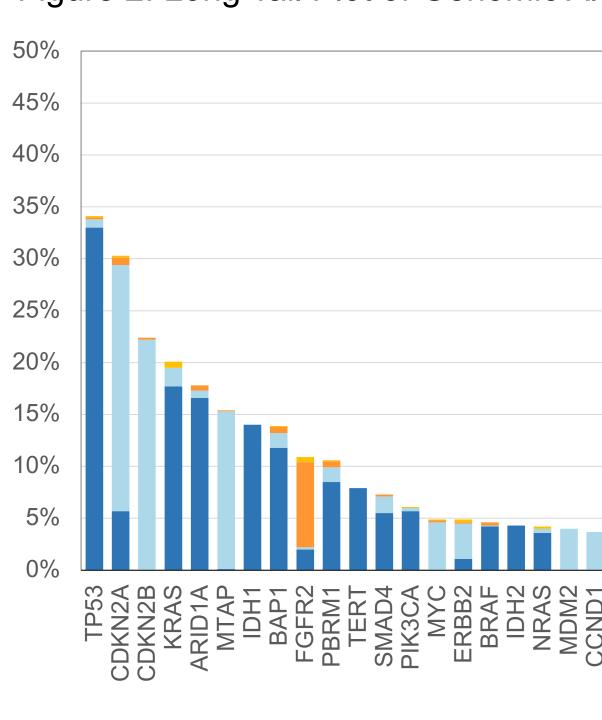


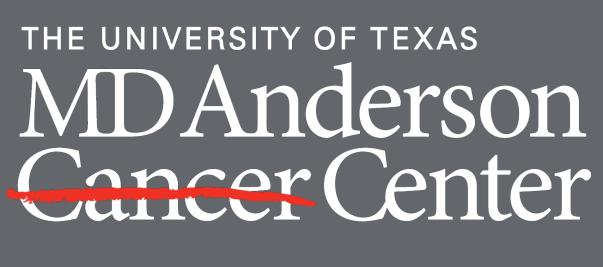
Figure 3: Fine needle aspiration biopsy of peri-portal lymph node. Imaging showed a large infiltrating mass in the liver with no extrahepatic biliary or pancreatic mass. IHC staining was consistent with iCCA.

-																				+ 1 D	h –								
			I				37,0)70,33 	:0 bp				I				37,0	70,34 	ЮБр				I				37,0)70,33	50 E
p. 1	1058]																												
																		A		l İ	H	:							
																					Ε								
																				l İ İ									
																				i	Ì								
C S	С	С	G	A	A	A	G	G	A	A	A	T	G	A	C	T	G	C	A	G	C	T	T	G	T	A	С	С	0

IGV view of homozygous MLH1 N168fs*34 frameshift mutation predicted to be a germline mutation.

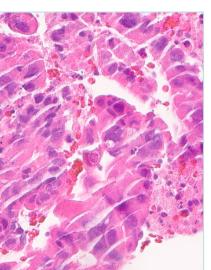
Conclusions

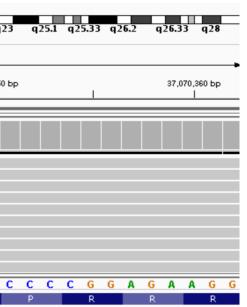
TMB-H is nearly mutually exclusive with previously identified iCCA drivers such as IDH1, IDH2 and FGFR2 fusions. Additionally, TMB-H cases have a nearly two-fold increase in mutations in TP53 and ARID1A. Mutations in homologous recombination genes such as BRCA2 and ATM are enriched, but their overall incidence is low. Finally, TMB-H cases are enriched in multiple independent biomarkers of response to immunotherapy such as MSI, PD-L1, evolving ones such as *PBRM1* and *STK11* and depleted in resistance biomarkers such as MTAP. These findings support the clinical development of immunotherapy approaches for the treatment of TMB-H iCCA.


Disclosures

All authors affiliated with Foundation Medicine, Cambridge have employment by Foundation Medicine Inc. and equity ownership in F. Hoffman-La Roche Ltd. The remaining authors have no disclosures.

Contact


TTang7@mdanderson.org


Figure 2: Long Tail Plot of Genomic Alterations in iCCA with TMB < 10 mut/Mb

Making Cancer History[®]

multiple alterations of same gene in same sample
rearrangements/fusions
copy number changes
short variant mutations
RAD21 FGF4 ATM FGF4 ATM FGF3 STK11 MCL1 MCL1 MCL1 MCL1 MCL1 MCL1 MCL1 MC

Clinically advanced iCCA involving the liver and periportal lymph nodes at presentation in a 73-year-old female. This tumor showed a Microsatellite status MSI-High status and a Tumor Mutational Burden of 29 Mut/Mb. Comprehensive genomic profiling revealed MLH1 homozygous frameshift N168fs*34 mutation be germline. These predicted to findings strongly suggest that this iCCA arose in a background of Lynch Syndrome. Addition short variant mutations were found in ARID1A BCOR, CREBBP, CTNNA1, CTNNB1, FAM123B, JAK3, NF1, NOTCH1, PIK3CA, PTCH1, SETD2, STK11 and TP53.