INTRODUCTION

M2 is a dominant negative transcription regulator that belongs to the Id gene family, since it associates with other members of class I and class II Hox, directly blocking the transcription by epigeneticists. M2 is involved in the regulation of proliferation, invasion, migration, metastasis, angiogenesis and immune response.

OBJECTIVES

We aimed to evaluate trametinib as a pharmacological inhibitor of M2 and enhance anti-PD-1/PD-L1 treatment efficacy through PD-L1 upregulation.

MATERIAL AND METHODS

In vitro

<table>
<thead>
<tr>
<th>LGLD-Immortal cells line</th>
<th>LGLD-Human cells line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Id1</td>
<td>4000</td>
</tr>
<tr>
<td>Anti-M2</td>
<td>4000</td>
</tr>
</tbody>
</table>

III. PD-L1 overexpression generated after MEK1/2 inhibition is dependent on Id1 blockade

RESULTS AND DISCUSSION

I. MEK1/2 inhibition decreased Id1 expression in vitro and in vivo

II. MEK1/2 inhibition increased PD-L1 expression replicating the effect of Id1 genetic silencing

CONCLUSIONS

1. MEK1/2 Inhibition through trametinib significantly decreased Id1 expression in vitro and in vivo, replicating genetic silencing with specific siRNAs against Id1.

2. PD-L1 upregulation induced by Id1 pharmacological blockade after trametinib treatment, could be used as a novel therapeutic strategy to sensitize NSCLC to anti-PD-1/PD-L1 immune checkpoint inhibitors.

ACKNOWLEDGEMENTS

1727P: TRAMETINIB ENHANCES PD-L1 EXPRESSION IN KRAS-MUTANT NSCLC VIA ID1 DOWNREGULATION

Ander Puigalto1,3, Maria Rodriguez-Remirez1,2, Inés López3, María Olmedo1, Anna Vilalta-Lacarra1,2, Connor Welch1, Silver Vincent1,2, Alfonso Calvo1,2, Ignacio Gil-Bazo1,2,3 (igbaz@fivoo.org)

1Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain 2University of Navarra, Center for Applied Medical Research, Program of Solid Tumors, Pamplona, Spain 3CIBERONC, Madrid, Spain