Real-world multicentre cohort of first-line pembrolizumab alone or in combination with platinum-based chemotherapy in advanced Non-Small Cell Lung Cancer PD-L1 $\geq 50\%$

Pons-Tostivint E.1, Hulo P.3, Guardiolle V.3, Bodot L.4, Rabeau A.4, Porte M.5, Hiret S.5, Demontroux P.6, Curcio H.6, Boudoussier A.7, Veillon R.7, Mayenga M.8, Dumelin C.9, Chartelier T.2, Gourraud PA.3, Mazieres J.5, Benounna J.8

Nantes University, Centre Hospitalier Universitaire des Angers, Angers, France. 1Department of Respiratory Diseases and Thoracic Oncology, APHP; Hôpital Pitié Salpêtrière, Paris, France. 2Department of Medical Oncology, Hôpital de la Conception, University of Pans-Université, 31000 Toulouse, France. 3Oncology Department, Hôpital Dupuytren, 72100 Boulogne-sur-Mer, France. 4Department of Pulmonology, Centre Hospitalier de Pons, 17800 Pons, France. 5Department of Respiratory Diseases and Thoracic Oncology, APHP; Hôpital Pitié Salpêtrière, Paris, France. 6Department of Medical Oncology, Comprehensive Cancer Center, University of Nantes, Centre Hospitalier de Nantes, 44035 Nantes, France. 7Department of Dermatology, Centre Hospitalier Universitaire de Tours, 37054 Tours, France. 8Medicenter, Nantes, France. 9Department of Respiratory Diseases and Thoracic Oncology, APHP; Hôpital Pitié Salpêtrière, Paris, France. 72000 Boulogne-sur-Mer, France.

Introduction

Pembrolizumab alone (IO-mono) or in combination with platinum-based chemotherapy (CT-IO) are first-line standard of care for advanced NSCLC patients with PD-L1 $\geq 50\%$. Here, we report the results of a French retrospective multicentre study evaluating patients and disease characteristics associated with physician’s choices of IO-mono or CT-IO.

We compared the real-world effectiveness of these therapeutic strategies.

Patients and Methods

Patients with advanced NSCLC PD-L1 $\geq 50\%$ from eight hospitals who had received at least one cycle of IO-mono or CT-IO were included. Overall survival (OS) and real-world progression-free survival (rPFS) were estimated using Kaplan-Meier methodology. Cox proportional hazards regression model was used to estimate hazard ratios (HRs) and 95% CIs, and a Cox model with inverse propensity treatment weighting was carried out.

Results

![Figure 2. Kaplan-Meier plot for Overall Survival, by treatment group and (A) Gender (B) PS (at baseline) (C) Brain metastases (D) PD-L1 status.](image)

![Figure 1. A) Kaplan-Meier plot for OS and B) PFS by treatment group.](image)

Conclusion

Younger patients, those with symptomatic disease and brain metastases were more likely to be proposed CT-IO. With a median follow-up of 11.5 months (95% CI, 10.4 – 13.3), median OS was not reached but no difference was observed between groups (p=0.51).

After adjustment, no statistically significant difference was found for OS between groups, neither in the multivariate adjusted model [HR 1.07 (95% CI 0.61 – 1.86), p=0.8] nor in propensity adjusted analysis [HR 0.99 (95% CI 0.60-1.65), p=0.99]. Male gender (HR 2.01, p = 0.01) and Performance Status ≥ 2 (HR 3.28, p < 0.001) were found to be negative independent predictive factors for OS.

![Figure 1. A) Kaplan-Meier plot for OS and B) PFS by treatment group.](image)

#1113P

Patients

<table>
<thead>
<tr>
<th>Patients (characteristics, n (%))</th>
<th>ID (n=142)</th>
<th>CT-IO (n=102)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>82 (58.2)</td>
<td>57 (55.8)</td>
<td>0.760</td>
</tr>
<tr>
<td>Female</td>
<td>59 (41.8)</td>
<td>45 (44.2)</td>
<td></td>
</tr>
<tr>
<td>Age group, years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 65</td>
<td>89 (63.1)</td>
<td>59 (57.7)</td>
<td>0.206</td>
</tr>
<tr>
<td>> 65</td>
<td>52 (36.9)</td>
<td>43 (42.3)</td>
<td></td>
</tr>
<tr>
<td>ECOG performance stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0–1</td>
<td>106 (75.2)</td>
<td>69 (67.9)</td>
<td>0.021</td>
</tr>
<tr>
<td>2</td>
<td>34 (24.8)</td>
<td>27 (26.1)</td>
<td></td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>12 (8.5)</td>
<td>9 (8.8)</td>
<td>0.954</td>
</tr>
<tr>
<td>Current or past</td>
<td>124 (91.2)</td>
<td>94 (91.2)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>5 (3.5)</td>
<td>3 (3.0)</td>
<td></td>
</tr>
<tr>
<td>Symptomatic disease at diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>102 (72.0)</td>
<td>68 (66.3)</td>
<td>0.062</td>
</tr>
<tr>
<td>Yes</td>
<td>40 (28.0)</td>
<td>34 (33.7)</td>
<td></td>
</tr>
<tr>
<td>Cardiacs at diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 10 mg/day</td>
<td>19 (13.6)</td>
<td>12 (11.8)</td>
<td>0.103</td>
</tr>
<tr>
<td>> 10 mg/day</td>
<td>22 (15.6)</td>
<td>18 (17.6)</td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>117 (84.4)</td>
<td>76 (75.3)</td>
<td></td>
</tr>
<tr>
<td>Missing</td>
<td>3 (2.1)</td>
<td>2 (1.9)</td>
<td></td>
</tr>
</tbody>
</table>

Baseline tumor characteristics, n (%):

![Table](image)

Patients (characteristics, n (%)):

- **Gender:** Male (82, 58.2%), Female (59, 41.8%).
- **Age group:** ≤ 65 (89, 63.1%), > 65 (52, 36.9%).
- **ECOG performance stage:** 0–1 (106, 75.2%), 2 (34, 24.8%).
- **Smoking status:** Never (12, 8.5%), Current or past (124, 91.2%).
- **Symptomatic disease at diagnosis:** No (102, 72.0%), Yes (40, 28.0%).
- **Cardiacs at diagnosis:** ≤ 10 mg/day (19, 13.6%), > 10 mg/day (22, 15.6%), None (117, 84.4%).

Baseline tumor characteristics:

- **Histology:** Squamous (155, 51.4%), Non-Squamous (128, 40.6%).
- **Tumor status:** PD-L1 ≥ 100 (99, 33.2%), PD-L1 $<$ 100 (121, 39.5%).
- **Number of metastatic sites:** 2 (169, 52.5%), 3 or + (150, 47.5%).
- **Brain metastases:** Yes (52, 16.3%), No (187, 61.4%).
- **Adverse events:** Yes (68, 22.4%), No (199, 63.7%).
- **Fluor de la Haye:** Yes (52, 16.3%), No (187, 61.4%).

Overall survival

- **Multivariate analyses:** Adjusted HR (95% CI)
 - Age, ≤ 65 \times ≥ 65: 1.00 (0.65–1.52)
 - Gender: Male \times Female: 1.00 (0.39–2.04)
 - ECOG PS: 1 \times 2: 1.00 (0.65–1.51)

Histology

- Squamous: 1.00 (0.74–1.37), Non-Squamous: 1.00 (0.74–1.37)

Brain Metastases

- No: 1.00 (0.65–1.51), Yes: 1.00 (0.65–1.51)

Adverse events

- Yes: 1.00 (0.65–1.51), No: 1.00 (0.65–1.51)

Fluor de la Haye

- Yes: 1.00 (0.65–1.51), No: 1.00 (0.65–1.51)

Baseline tumor characteristics:

- **Histology:** Squamous (155, 51.4%), Non-Squamous (128, 40.6%).
- **Tumor status:** PD-L1 ≥ 100 (99, 33.2%), PD-L1 $<$ 100 (121, 39.5%).
- **Number of metastatic sites:** 2 (169, 52.5%), 3 or + (150, 47.5%).
- **Brain metastases:** Yes (52, 16.3%), No (187, 61.4%).
- **Adverse events:** Yes (68, 22.4%), No (199, 63.7%).
- **Fluor de la Haye:** Yes (52, 16.3%), No (187, 61.4%).

References

1. Kaye et al., 2016; 2. Planchar et al., Ann Oncol 2018

Figure 1. A) Kaplan-Meier plot for OS and B) PFS by treatment group.

Figure 2. Kaplan-Meier plot for Overall Survival, by treatment group and (A) Gender (B) PS (at baseline) (C) Brain metastases (D) PD-L1 status.

This presentation is the intellectual property of the authors. Contact them at elw.pons@chu-nantes.fr for permission to reprint and/or distribute.

First author conflicts of interest: nothing to declare