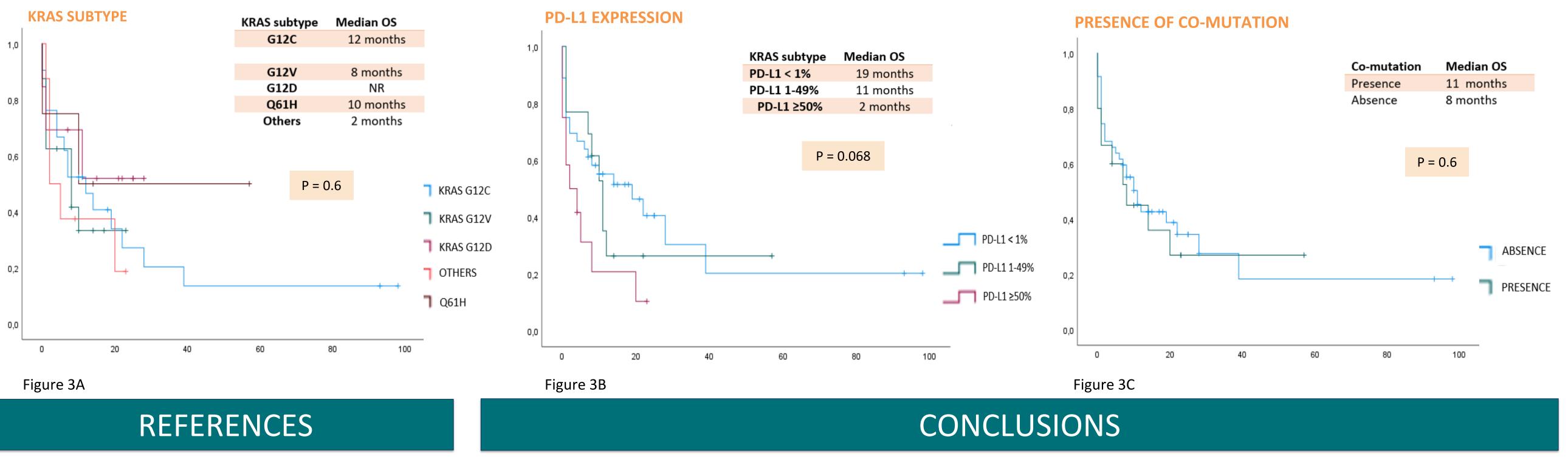
Molecular characterization of KRAS NSCLC all stages: a single-center cohort

BACKGROUND

sarcoma viral oncogene Kirsten rat (KRASm) is detected in mutation approximately 25% of non-small cell lung cancer (NSCLC) adenocarcinoma patients. As Next-generation sequencing (NGS) has increasingly employed, diverse been different with KRASm subtypes prognoses, incidences of co-mutations and characteristics have been described.

METHODS

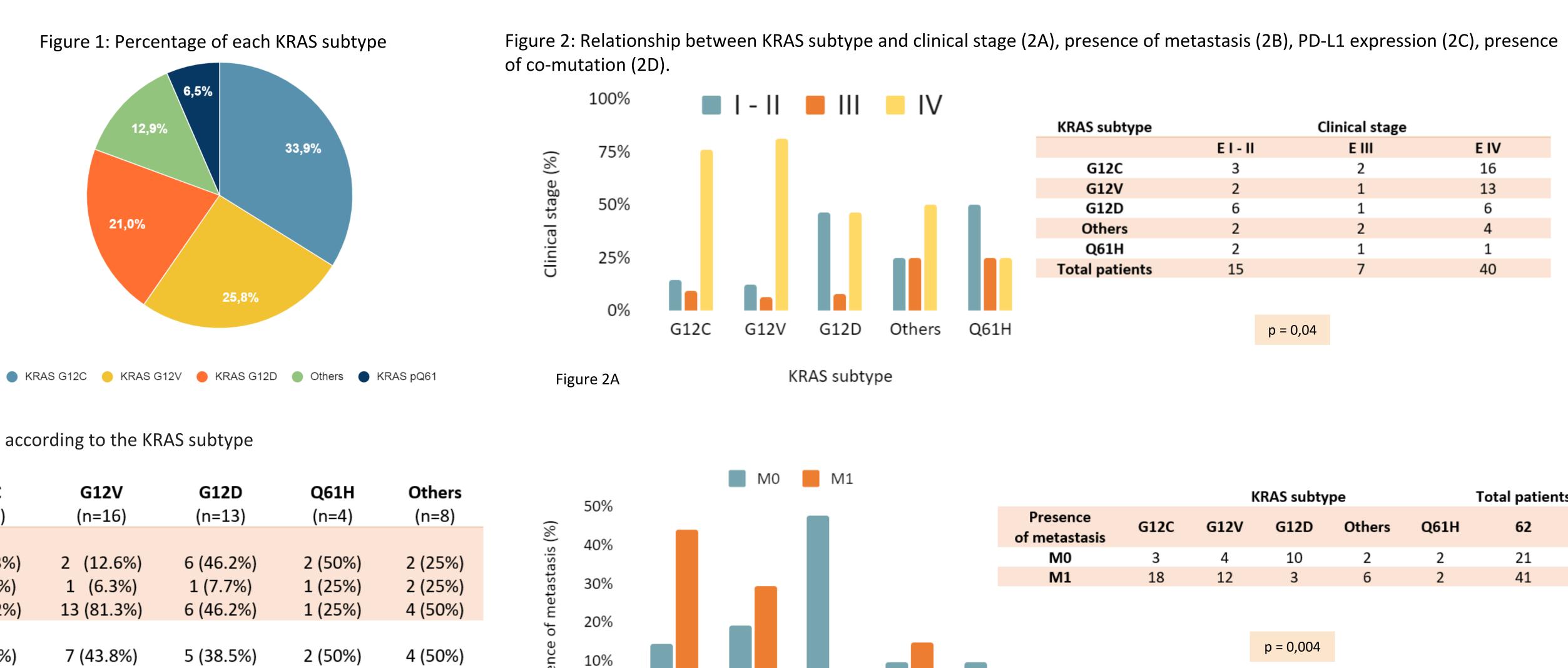

We performed NGS to all stages NSCLC patients from 2019 to 2021. Tissue genotyping was performed through Illumina Focus, a 52 genes targeted NGS panel that simultaneously analyzes DNA and RNA alterations. In addition, a single test for rearrangement assessment was done in necessary cases. Programmed death ligand-1 (PD-L1) expression was tested by SP263 antibody. We analyzed pathological clinical and the characteristics of KRASm patients.

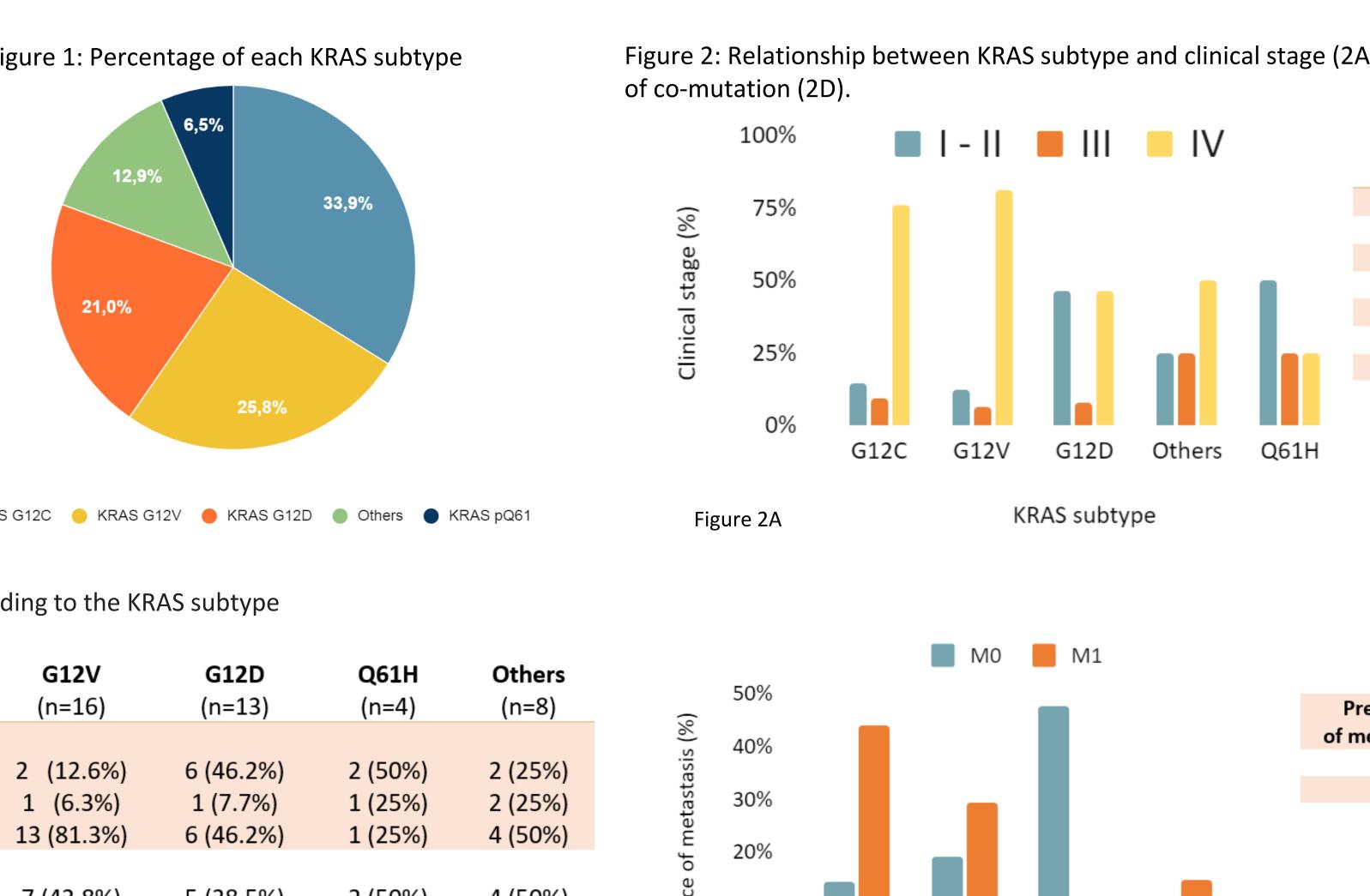
A total of 62 from 123 patients had KRASm. Median age 67 years [49-92], 79% were male, 87.1% was adenocarcinomas, and only 8.1% non-smokers. In 19.4% of sufficient NGS for molecular was patients, characterization, but in 75.8% a single molecular test had to be added. KRASm subtypes in our cohort were: G12C (33.9%), G12V (25.8%), G12D (21%) and Q61H (6.5%).

Table 1: Baseline characteristics of patients

Age (years)	67 [49-92]
Sex	
Men	49 (79%)
Women	13 (21%)
Ethnic origin	
Caucasian	61 (98.4%)
Black	1 (1.6%)
ECOG	
0	15 (24.2%)
1	31 (50%)
2	9 (14.5%)
3	7 (11.3%)
Smoking habit	
Yes	57 (91.9%)
No	5 (8.1%)
Histological subtype	54 (07 444)
Adenocarcinoma	54 (87.1%)
Squamous	1 (1.6%)
Others	7 (11.3%)
Clinical stage	45 (24 20/)
I-II	15 (24.2%)
	7 (11.3%)
IV Malasular suskissi	40 (64.5%)
Molecular evaluation	12 /10 404)
NGS NGS I Single test	12 (19.4%) 47 (75.8%)
NGS + Single test	47 (75.8%) 2 (4 %)
Single test	3 (4.8%)
Evaluation PD-L1 expression Yes	61 (98.5%)
No	1 (1.6%)
	1 (1.070)

Figure 3: Overall survival according to the KRAS subtype (3A), PD-L1 expresión (3B) and presence of co-mutation (3C).




- 1. M. Reck1, et al. Targeting KRAS in non-small-cell lung cancer: recent progress and new approaches. Ann Oncol 2021 Sep;32(9):1101-1110.
- 2. M. Drosten, et al. Targeting KRAS mutant lung cancer: light at the end of the tunnel. Molecular Oncology 16 (2022) 1057–1071.

Our results suggest the importance of knowing the KRAS status and its subtype in NSCLC. This is necessary in metastatic patients but also in the early stages, taking into account the relationship observed between the subtype and the risk of metastasis. PD-L1 status could be a prognostic factor in KRASm patients, but more investigations are required.

E: Clinical stage; KRAS: Kirsten rat sarcoma viral oncogene; M1: presence of metastasis; M0: absence of metastasis; PD-L1: Programmed death-ligand 1;NR: not reached; OS: Overall survival

C. Climent, N. Lopez, S. Soriano, M. Rodriguez, P. Andreu, M. Sierra, J. Giner, L. Vilà. Parc Taulí Hospital Universitari. Institut d'Investigació I Innovació Parc Tauli I3PT. Universitat Autònoma de Barcelona. Sabadell, Spain.

1 NRAS mutation

Table 2: characteristics of patients according to the KRAS subtype

31 (50%) 9 (14.5%) 7 (11.3%)		G12C (n=21)	G12V (n=16)	G12D (n=13)	
57 (91.9%) 5 (8.1%)	Clinical stage -	3 (14.3%)	2 (12.6%)	6 (46.2%)	
54 (87.1%)	III IV	2 (9.5%) 16 (76.2%)	1 (6.3%) 13 (81.3%)	1 (7.7%) 6 (46.2%)	
1 (1.6%) 7 (11.3%)	PD-L1 expression ≥1 Yes	5 (23.8%)	7 (43.8%)	5 (38.5%)	
15 (24.2%) 7 (11.3%)	No	16 (76.2%)	9 (56.3%)	7 (53.8%)	
40 (64.5%)	Co-mutation Yes	5 (23.8%)	6 (37.5%)	1 (7.7%)	
12 (19.4%)	No	16 (76.2%)	10 (62.5%)	12 (92.3%)	
47 (75.8%) 3 (4.8%) 61 (98.5%)		1 BRAF mutation not V600E 2 RET rearrangements 1 FGFR2 mutation 1 PI3KCA mutation	1 EGFR mutation 1 PDGFRA mutation 1 PIK3CA mutation 1 JAK2 mutation	1 KRAS co-mutation	1 ER co-m 1 mT
1 (1.6%)		THOREA MULLION	1 C-KIT mutation		

RESULTS

2 (50%) 4 (50%) 2 (50%) 2 (25%) 6 (75%) 2 (50%) ERBB2 + MAP2KI

-mutation mTOR mutation

Figure 2C

0%

Figure 2B

G12C

G12V

G12D

KRAS subtype

Others

Q61H

KRAS subtype

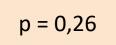
KRAS subtype

Parc Taulí

UAB

KRAS subtype	Clinical stage			
	EI-II	E III	E IV	
G12C	3	2	16	
G12V	2	1	13	
G12D	6	1	6	
Others	2	2	4	
Q61H	2	1	1	
Total patients	15	7	40	

p = 0,04


		к	Total patients			
esence etastasis	G12C	G12V	G12D	Others	Q61H	62
M0	3	4	10	2	2	21
M1	18	12	3	6	2	41

p = 0,004

)-L1 ession		KRAS subtype				Total patients
	G12C	G12V	G12D	Others	Q61H	61
1 < 1%	16	7	7	4	2	36
1-49%	4	4	4	0	1	13
≥ 50%	1	5	1	4	1	12

p = 0,16

	Co-mutation			
KRAS subtype	Absence	Presence		
G12C	17	4		
G12V	10	6		
G12D	12	1		
Others	6	2		
Q61H	2	2		
Total patients	47	15		

Abstract 25 Poster 79

