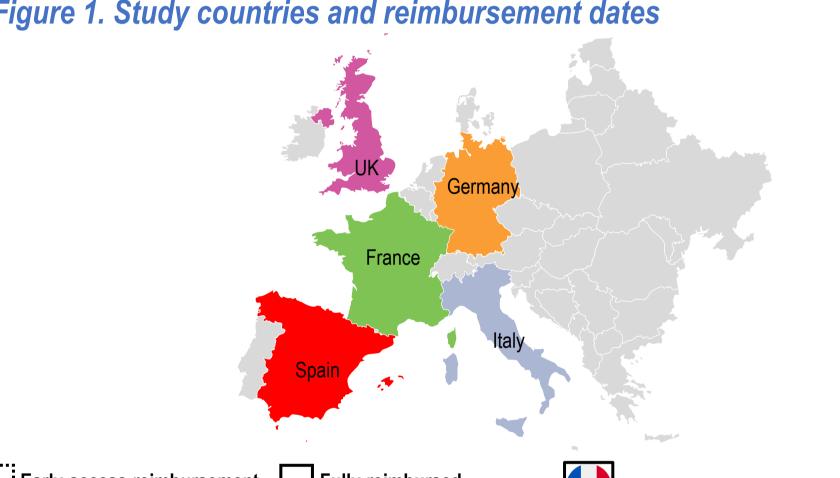
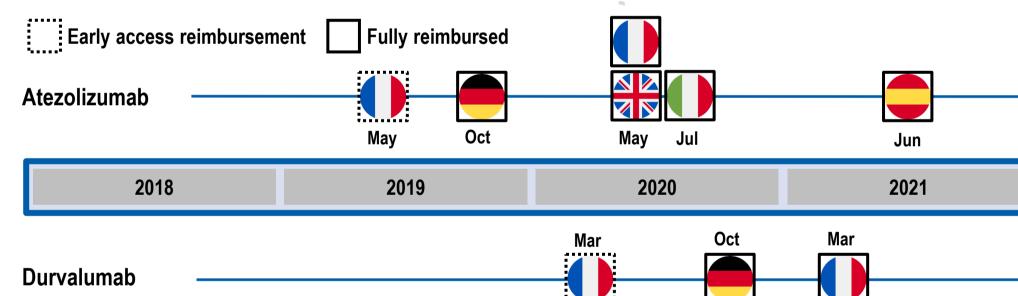
A retrospective cross-sectional study of treatment patterns in small-cell lung cancer (SCLC) in Europe 2018–2021

Noemi Reguart, MD, PhD;¹ Stephen Puntis, DPhil;² Katarina Öhrling, MD, PhD;³ Ali Abbasi MD, PhD;^{2*} Karly S Louie, PhD;^{2*} Martin Sebastian, MD⁴

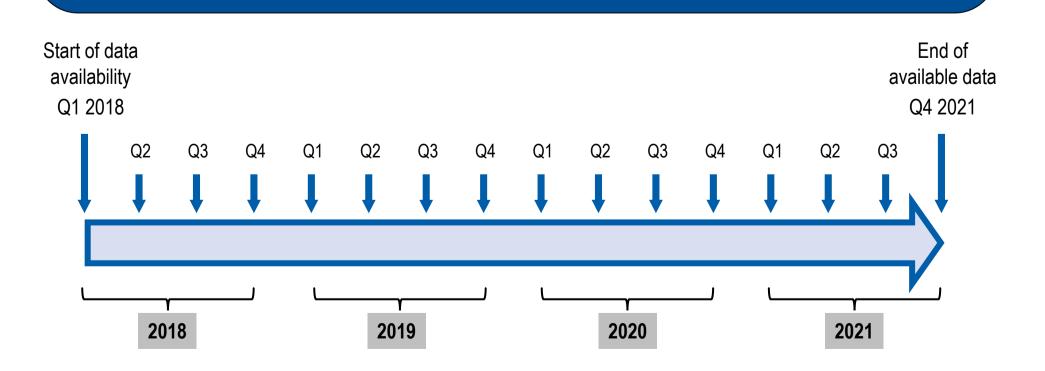

¹Medical Oncology Department, Hospital Clinic, IDIBAPS, Barcelona, Spain; ²Amgen Ltd, Uxbridge, UK; ³Amgen (Europe) GmbH, Rotkreuz, Switzerland; ⁴Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, Frankfurt, Germany. *Affiliation at the time the research was conducted



INTRODUCTION

- SCLC is an aggressive malignancy with a poor prognosis that represents ~15% of all lung cancer cases¹
- Development of new effective treatments for SCLC was limited until anti-PD-L1 therapies, atezolizumab and durvalumab, received EU approval for 1st-line (1L) treatment of extensive stage SCLC (ES-SCLC) in 2019³ and 2020,⁴ respectively (reimbursement dates are shown
- Previous studies of treatment patterns in patients with SCLC in Europe described single countries and were limited to specific settings (e.g. hospital database)⁵ or were conducted prior to the approval of the anti-PD-L1 therapies⁶
- Updated information on real-world treatment patterns in Europe is important to understand the therapeutic landscape in the context of new regimen approvals and to identify potential unmet needs for patients with SCLC
- Here we report demographics, clinical characteristics and treatment patterns for patients with ES-SCLC in France, Germany, Spain, Italy and the UK

Figure 1. Study countries and reimbursement dates



METHODS

IQVIA Oncology Dynamics dataset

- A repeated quarterly, cross-sectional, retrospective study of drug-treated patients with cancer in Europe and the UK
- A network of physicians from general hospitals, specialist cancer hospitals, academic centres and office-based cancer facilities collect individual-level information from patient medical records into an anonymised survey form

The study included adults ≥18 years of age who were diagnosed with ES-SCLC and received any systemic treatment between Q1 2018 and Q4 2021

The primary objectives were to describe clinical characteristics, demographics and treatment patterns of patients with ES-SCLC in France, Germany, Italy, Spain and the UK

RESULTS

Baseline characteristics

- Overall, data for 5,832 patients with ES-SCLC were included in the analysis; n=4,898 1L, n=804 2nd-line (2L) and n=130 3rd-line or greater. Baseline demographics and characteristics are shown in Table 1
- Specialist cancer hospitals treated the greatest number of patients (n=2,419, 41.5%), followed by academic cancer hospitals (n=2,041, 34.9%), office-based practitioners (n=849, 14.6%) and general hospitals (n=519, 8.9%), and n=4 (0.1%) unknown (data not shown)

Table 1. Characteristics of FS-SCI C patients (n=5.832)

	EU5 (N=5,832)	France (n=544)	Germany Spain		Italy (n=1,850)	UK (n=1,149)	
Male, n (%)	3,843 (65.9)	394 (72.4)	(n=1,518) 975 (64.2)	(n=771) 561 (72.8)	1,277 (69.0)	636 (55.4)	
Median age (Q1, Q3)	66 (58, 72)	63 (58, 68)	63 (58, 68)	63 (58, 71.8)	67.7 (58, 72.8)	67 (58, 72.4)	
Stage at primary diagnosis, n (%)							
≤II	50 (0.9)	11 (2.0)	14 (0.9)	8 (1.0)	10 (0.5)	7 (0.6)	
III	304 (5.2)	30 (5.5)	66 (4.3)	53 (6.9)	53 (6.9) 78 (4.2)		
IV	5,158 (88.4)	503 (92.5)	1,438 (94.7)	709 (91.9)	1,443 (78.0)	1,065 (92.7)	
Unknown	320 (5.5)	-	-	1 (0.1)	319 (17.2)	-	
Current* ECOG score, n (%)							
0–1	4,350 (74.6)	394 (72.4)	1,054 (69.4)	572 (74.2)	1,567 (84.7)	763 (66.4)	
2+	1,452 (24.9)	150 (27.6)	464 (30.6)	199 (25.8)	253 (13.7)	386 (33.6)	
Unknown	30 (0.5)	-	-	-	30 (1.6)	-	
Current* smoking status, n (%) [†]	(n=4,425)	(n=374)	(n=1,142)	(n=594)	(n=1,454)	(n=861)	
Current	2,316 (52.3)	234 (62.6)	649 (56.8)	303 (51.0)	670 (46.1)	460 (53.4)	
Former	1,684 (38.1)	113 (30.2)	405 (35.5)	226 (38.0)	613 (42.2)	327 (38.0)	
Never	364 (8.2)	23 (6.1)	78 (6.8)	65 (10.9)	133 (9.1)	65 (7.5)	
Unknown	61 (1.4)	4 (1.1)	10 (0.9)	0 (0.0)	38 (2.6)	9 (1.0)	

*At time of survey; †Smoking status from 2018–2020; data on smoking status were not collected in 2021 ECOG, Eastern Cooperative Oncology Group; ES-SCLC, extensive stage small cell lung cancer

Treatment regimens by year in EU5

- The most common 1L regimens during 2018–2021 were platinum + etoposide combination chemotherapies (91.8%, 85.9%, 62.8%, 42.3% in each year, respectively; Figure 2, left panel)
- By 2021, the overall extent of 1L atezolizumab + platinum chemotherapy combination use was similar to use of the platinum + etoposide combination (41.2% and 42.3%, respectively)
- The most common 2L treatment during 2018–2021 was topotecan with its use decreasing slightly during this period (59.8%, 57.7%, 57.3%, 50.3% in each year, respectively; Figure 2,
- Anti-PD-(L)1 / anti-CTLA-4 use in 2L treatment increased during 2018-2021 (2.2%-9.2%) despite no approval for SCLC 2L (data not shown)

1L platinum + atezolizumab

 Platinum chemotherapy + atezolizumab 1L treatment has increased across Europe during 2018–2021, and in 2021 was the most common 1L regimen in Germany (54.8%), France (48.5%) and the UK (43.7%) (Figure 3, left panel)

1L platinum + durvalumab

In 2021, platinum chemotherapy + durvalumab combination 1L use represented 31.8% of all 1L treatment in France, but <3% of all 1L use in the other European countries examined (Germany [2.7%], Spain [2.0%], the UK [0.4%] and Italy [0.3%]; Figure 3, right panel)

2L treatment by platinum status

Topotecan was the most used 2L treatment irrespective of platinum sensitivity status, with carboplatin / etoposide the second most used treatment in platinum-sensitive patients (Table 2)

Figure 2. Most frequent regimens by line of therapy (EU5) from 2018–2021

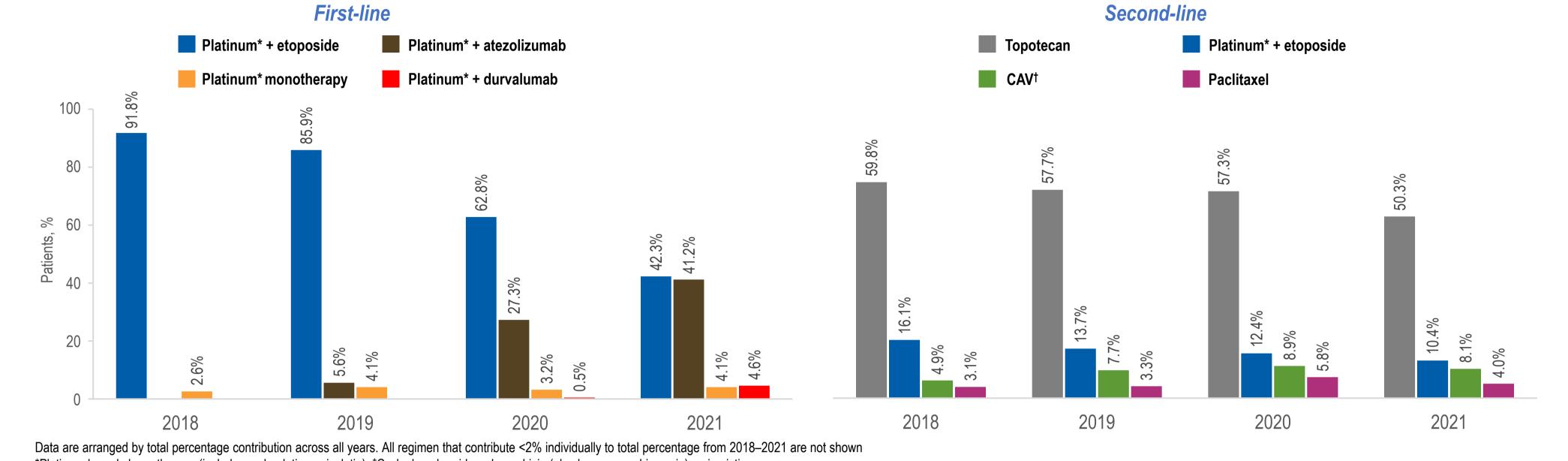


Figure 3. Use of platinum chemotherapy + atezolizumab or durvalumab, as a percentage of all 1L treatment from 2018–2021

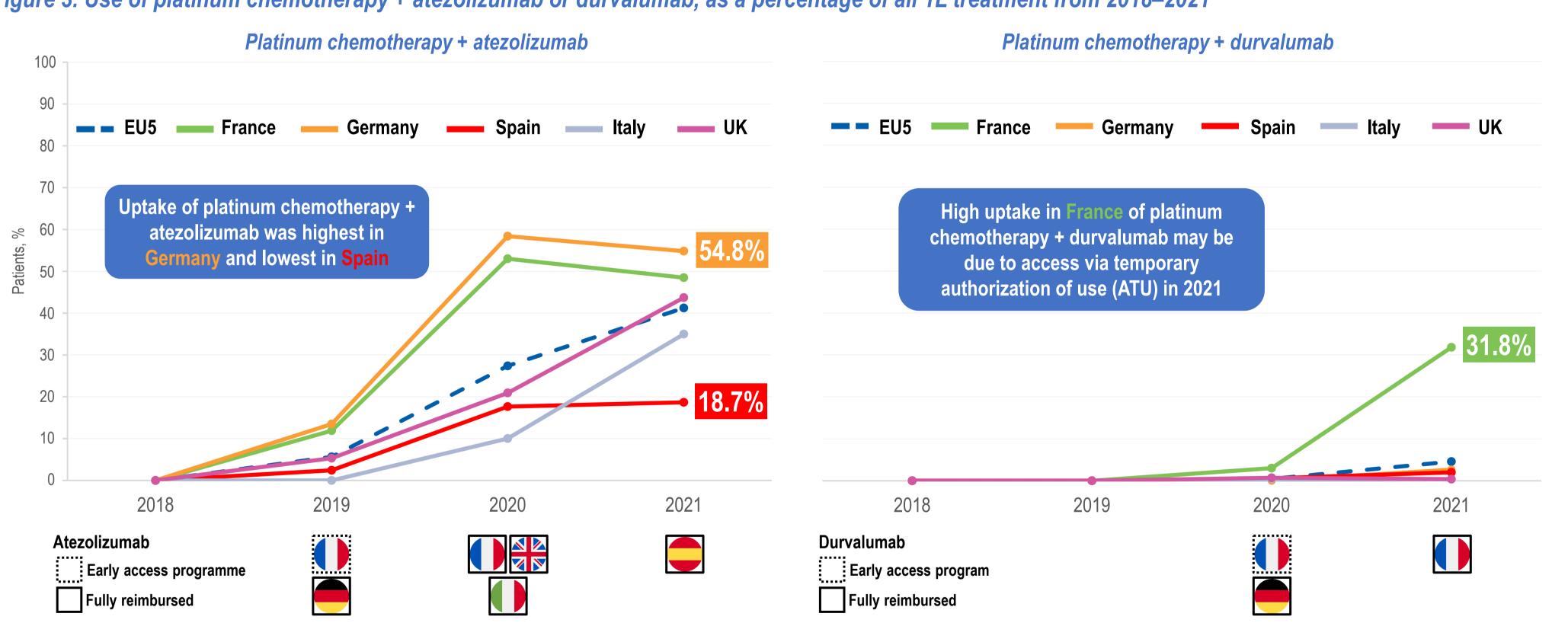


Table 2. Top 3 systemic 2L ES-SCLC regimens by platinum status (EU5)

	2018		2019		2020		2021	
Platinum status	Regimen	n (%)	Regimen	n (%)	Regimen	n (%)	Regimen	n (%)
Resistant		N=63		N=47		N=44		N=45
	Topotecan	46 (68.3)	Topotecan	31 (65.9)	Topotecan	31 (70.5)	Topotecan	25 (55.5)
	Carboplatin / paclitaxel	4 (6.3)	CAV†	7 (14.9)	CAV†	7 (15.9)	Carboplatin / etoposide	5 (11.1)
	Nivolumab*, paclitaxel*, CAV*†	3 (4.8)	Carboplatin / irinotecan	2 (4.3)	Carboplatin / irinotecan	2 (4.5)	CAV†	4 (8.8)
Sensitive		N=133		N=98		N=108		N=61
	Topotecan	71 (53.4)	Topotecan	53 (54.1)	Topotecan	56 (51.9)	Topotecan	35 (57.4)
	Carboplatin / etoposide	30 (22.6)	Carboplatin / etoposide	17 (17.3)	Carboplatin / etoposide	24 (22.2)	Carboplatin / etoposide	6 (9.8)
	CAV†	8 (6.0)	CAV†	5 (5.1)	CAV†	9 (8.3)	CAV*†, lurbinectedin*	3 (4.9)
Unknown		N=28		N=37		N=73		N=67
	Topotecan	17 (60.7)	Topotecan	21 (56.8)	Topotecan	47 (64.4)	Topotecan	27 (40.3)
	Paclitaxel	2 (7.1)	Paclitaxel	3 (8.1)	Paclitaxel	6 (8.2)	Atezolizumab	8 (11.9)
	Irinotecan	2 (7.1)	CAV*†, gemcitabine / irinotecan*	2 (5.4)	CAV†	4 (5.5)	CAV†	7 (10.4)

Percentages do not add up to 100% as only the top 3 regimens are shown *Equal number of patients on regimen; †Cyclophosphamide + doxorubicin (also known as adriamycin) + vincristine. ES-SCLC, extensive stage small cell lung cancer

CONCLUSIONS

- Use of platinum-based chemotherapy + anti-PD-L1 inhibitor therapy as a 1L treatment of ES-SCLC in Europe has increased during the period from 2018–2021
- Extent of uptake of platinum-based chemotherapy + anti-PD-L1 inhibitor therapy for 1L treatment varied between the countries
- Overall greatest in France, which may be related to an early access programme for durvalumab, and lowest in Spain, which may be related to a delay in reimbursement of atezolizumab
- Topotecan continues to be the most common 2L treatment overall in EU5 regardless of platinum sensitivity

REFERENCES

- Inoue M, et al. Gen Thorac Cardiovasc Surg 2012;60:401–405
- National Cancer Institute. Surveillance, Epidemiology, and End Results program (SEER). Available at: http://seer.cancer.gov/csr/1975_2012/browse_csr.php. Accessed 26 Aug 2022
- Roche press release. Available at: https://www.globenewswire.com/news- release/2019/09/06/1912014/0/en/European-Commission-approves-Roche-s-Tecentriq-incombination-with-chemotherapy-for-the-initial-treatment-of-people-with-extensive-stagesmall-cell-lung-cancer.html. Accessed 26 Aug 2022
- AstraZeneca press release. Available at: https://www.astrazeneca.com/media-centre/press- releases/2020/imfinzi-approved-in-EU-for-small-cell-lung-cancer.html Accessed 26 Aug 2022
- Cramer-Van Der Welle CM, et al. *Eur J Cancer Care (Engl)* 2020;29:e13250
- Dibonaventura MD, et al. Ther Clin Risk Manag 2019;15:355–366

ACKNOWLEDGEMENTS

- Medical writing support for this presentation was funded by Amgen Inc. and was provided by Thomas Owens, PhD, and Josh Lilly, PhD, of Aspire Scientific Ltd (Bollington, UK)
- This study was sponsored by Amgen Ltd

DISCLOSURES

- Noemi Reguart has received honoraria for speaker / advisory board activities from Amgen, AstraZeneca, Bayer, BMS, Boehringer, Guardant, Janssen, MSD, Novartis, Pfizer, Roche, Sanofi and Takeda
- Stephen Puntis and Katarina Öhrling are employed by and hold shares in Amgen
- Ali Abbasi reports contract work with Amgen
- Karly S Louie is a former employee of and holds stocks in Amgen, and is an employee of and holds stock options / shares in BioMarin Pharmaceutical Inc.
- Martin Sebastian has received grants from AstraZeneca, personal fees from Amgen. AstraZeneca, BioNTech, BMS, Boehringer Ingelheim, CureVac, Janssen-Cilag, Lilly, Merck-Serono, MSD, Novartis, Pfizer, Roche, Sanofi-Aventis and Takeda, and non-financial support from BMS, Pfizer and Takeda

ESMO, Paris; 9–13 September 2022