Phase 1 study of CKD-702, an EGFR-cMET bispecific antibody, in advanced or metastatic non-small cell lung cancer (NSCLC)

¹Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; ³Department of Clinical Pharmacology & Therapeutics, Seoul National University Hospital, Seoul, Republic of Korea; ⁴Bio Drug Discovery, CKD - Chong Kun Dang Research Institute (Hyojong), Yongin, Republic of Korea; ⁵Department of Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea

Introduction

- Aberrant activations of both EGFR and cMET signaling pathways have been implicated **Patients** in driving tumor cell growth and proliferation in lung cancer. Mutual synergism between • At data cut-off (3 Feb 2022), 24 patients were enrolled and received CKD-702. EGFR and cMET is known to promote acquired drug resistance. Because of this crosstalk between cMET and EGFR pathways, dual inhibition of these targets holds promise as a • Of these patients, 6 (25%) were identified with MET exon 14 skipping mutation and 7 (29%) treatment for NSCLC patients. were identified with MET amplification. Among 17 (71%) patients with EGFR mutation, Exon 19 deletion and Exon 21 L858R were most commonly identified (Table 1).
- CKD-702 is a bispecific antibody designed to neutralize, internalize and degrade EGFR and cMET receptors, leading to disruption of downstream signaling (Figure 1). In preclinical

studies, CKD-702 demonstrates efficacy in tumor models that have primary/ secondary activating EGFR mutations as well as EGFR exon 20 insertion mutations. In addition, CKD-702 is highly effective in models with cMET amplification, exon 14 skipping mutation or cMET TKI-resistance. This preclinical profile supports the clinical trial of CKD-702 as monotherapy in selected lung cancer patients with aberrant cMET and EGFR signaling.

- In this report we present data concerning the safety, pharmacokinetics (PK), pharmacodynamic (PD) and preliminary efficacy of CKD-702 from a dose escalation phase 1 study in patients with advanced/metastatic NSCLC.

Methods

- Patients received intravenous (IV) CKD-702 once every 2 weeks (q2w) using a 3+3 design in 4 escalating doses from 10 mg/kg to 25 mg/kg until progression or unacceptable toxicity (Figure 2).
- Molecular changes were investigated during the screening period using ctDNA and/or tumor tissue.

Figure 2. Study design

Dong-Wan Kim¹, Se-Hoon Lee², In-Jin Jang³, Kyujin Park⁴ and Dae Ho Lee⁵

Poculte	
nesulls	

All 24 response-evaluable patients received prior treatment for advanced or metastatic disease. Among them, 6 (25%) had received 1 course of prior therapy, 4 (17%) had received 2 previous courses of therapy and 14 (58%) had received more than 3 courses of prior therapy.

 Table 1. Baseline patient characteristics

Characteristics	Total (n=24)			
Median age, years (range)	67 (48-80)			
Male / Female, n (%)	11 (46) / 13 (54)			
Smoking history, n (%)				
Never / Former / Current	12 (50) / 12 (50) / 0			
ECOG PS, n (%)				
0	3 (13)			
1	21 (88)			
Median time from diagnosis of metastatic disease, months (range)	2 (0-7)			
Histological subtype, n (%)				
Adenocarcinoma	21 (88)			
Squamous cell carcinoma	2 (8)			
Other (Sarcomatoid carcinoma)	1 (4)			
Brain metastases, n (%)	15 (63)			
Previous lines of therapies, n (%)				
1	6 (25)			
2	4 (17)			
≥3	14 (58)			
MET exon 14 skipping [†] , n (%)	6 (25)			
MET amplification ^{†‡} , n (%)	7 (29)			
EGFR mutation ⁺ , n (%)	17 (71)			
Exon 19 deletion	4 (17)			
Exon 19 deletion + T790M	2 (8)			
Exon 19 deletion + T790M + C797S	2 (8)			
Exon 21 L858R	6 (25)			
Exon 21 L858R + T790M	1 (4)			
Exon 21 L858R + Exon 20 insertion	1 (4)			
Exon 20 insertion	1 (4)			

⁺ Patients' information for genetic alterations were determined by local or central test results.

[‡] MET GCN \geq 5 or MET to CEP7 ratio \geq 2

Pharmacokinetics & Pharmacodynamics

- CKD-702 exposure and half-life increased in a dose-related manner; accumulation (~1.3×) was confirmed upon repeat-dosing (Figure 3).
- EGFR-extracellular domain (ECD) tended to increase ~2-fold regardless of CKD-702 dose; cMET-ECD increased dose-dependently to 20 mg/kg with estimated saturation >20 mg/kg.

Figure 3. Mean plasma concentration-time profiles of CKD-702 after single and multiple intravenous infusions of CKD-702

cMET & EGFR-specific CKD-702

^aThe number of subjects for multiple intravenous infusion was 10.

Safety

- No DLTs were reported; \geq 1 treatment-emergent AEs (TEAEs) occurred in all 24 patients (Table 2).
- Common (≥20%) all-grade (Gr) TEAEs were rash, paronychia, stomatitis, nausea, and hypoalbuminemia. Infusion related reactions (21%) were all Gr 1–2.
- TEAEs \geq Gr 3 occurred in 42% of patients; 3 patients reported Gr 3 rash (2 maculopapular, 1 acneiform) (Table 3).

Table 2. Adverse events summary

Adverse Events, n (%)	Total (n=24)			
Treatment-Emergent Adverse Events (TEAEs)	24 (100)			
Treatment-related AEs	24 (100)			
Grade \geq 3 TEAEs	10 (42)			
Grade ≥3 Treatment-related AEs	6 (25)			
Serious TEAEs	22 (92)			
Treatment-related SAEs ^a	4 (17)			
TEAE leading to death ^b	1 (4)			
TEAEs leading to discontinuation ^c	4 (17)			

^aOne case each of generalised oedema, pyrexia, duodenal ulcer, and pneumonitis. ^oOne case of pneumonitis (4%) which was considered treatment-related. ^cIwo cases of rash (8%), and one each of pneumonia (4%), and pneumonitis (4%); these correspond to treatment-related AEs (except 1 case of pneumonia)

Table 3. TEAEs \geq 15% by dose level (All grade / Grade \geq 3)

Preferred term	Total (n=24)		Level 1 (10 mg/kg) (n=3)		Level 2 (15 mg/kg) (n=3)		Level 3 (20 mg/kg) (n=12)		Level 4 (25 mg/kg) (n=6)	
	All grade	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3	All grade	Grade ≥3
Rash	19 (79)	3 (13)	2 (67)	_	2 (67)	_	10 (83)	1 (8)	5 (83)	2 (33)
Paronychia	7 (29)		—		—		3 (25)		4 (67)	
Stomatitis	6 (25)	1 (4)	1 (33)	—	1 (33)	—	2 (17)	1 (8)	2 (33)	—
Hypoalbuminaemia	5 (21)	1 (4)	—	—	—	—	3 (25)	1 (8)	2 (33)	_
Nausea	5 (21)		—		1 (33)		2 (17)		2 (33)	
Pneumonia	4 (17)	1 (4)	—	—	—	—	2 (17)	—	2 (33)	1 (17)
Pruritus	4 (17)		1 (33)		_		2 (17)		1 (17)	

*Grade 1–2 infusion-related reactions for CKD-702 occurred in 5 patients (21%) and included urticaria (n=2), pruritus, rash, dysaesthesia, headache, pyrexia, and myalgia (n=1 for each of these) and multiple symptoms occurred in some patients.

 The recommended phase 2 dose was determined to be 20 mg/kg based on safety, PK, and PD review.

Anti-tumor effects

- Among 24 response-evaluable patients, 5 achieved a best time point response of partial response (PR) including 2 confirmed PR: 3 MET exon 14 skipping, 1 MET IHC 3+ with EGFR exon 19 deletion, and 1 EGFR L858R with no identified MET-alteration.
- Among 6 patients with MET exon 14 skipping (4 cMET TKI-naïve and 2 cMET TKIresistant), 3 (all of cMET TKI-naïve) had a best time point result of PR including 2 confirmed (Figure 4).

Figure 4. Best % change from baseline in sum of target lesion diameters

Conclusion

CKD-702 has a manageable safety profile related to EGFR and cMET inhibition, and produced a preliminary response in patients with MET exon 14 skipping. In a follow-up dose expansion study, a dosage of CKD-702 20 mg/kg IV q2w will be investigated, and the planned cohort will include patients with MET-alteration NSCLC. ClinicalTrials.gov identifier: NCT04667975

The presenting author discloses receiving medical writing support from Amgen, AstraZeneca, Boehringer-Ingelheim, BMS, Chong Kun Dang, Daiichi-Sankyo, GSK, Pfizer, MSD, Meck, Novartis, Roche, Takeda, Yuhan; research grants to author's institution from Alpha Biopharma, Amgen, Astrazeneca/Medimmune, Boehringer-Ingelheim, BMS, Bridge BioTherapeutics, Chong Kun Dang, Daiichi-Sankyo, GSK, Hanmi, Janssen, Merck, Merus, Mirati Therapeutics, MSD, Novartis, ONO Pharmaceutical, Pfizer, Roche/Genentech, Takeda, TP Therapeutics, Xcovery, Yuhan; and travel support for advisory board meeting attendance from Amgen, Daiichi-Sankyo.

Presenting author: Dong-Wan Kim (kimdw@snu.ac.kr)

Acknowledgements and Disclosures: This study was funded by Chong Kun Dang Pharmaceutical Corp