985P - Tepotinib outcomes according to prior therapies in patients with MET exon 14 (METex14) skipping NSCLC

POSTER PDF

Copies of this poster obtained through QR (Quick Response) and/or text key codes are for personal use only and may not be roduced without writte. rmission of the authors

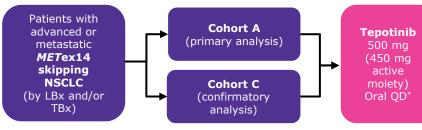
Egbert F. Smit¹, Marina C. Garassino², Enriqueta Felip³, Hiroshi Sakai⁴, Xiuning Le⁵, Remi Veillon⁶, Julien Mazieres⁷, Alexis B. Cortot⁸, Jo Raskin⁹ Michael Thomas^{10,11}, Santiago Viteri^{12,13}, Karin Berghoff¹⁴, Rolf Bruns¹⁵, Gordon Otto¹⁶, Paul K. Paik^{17,18}

Department of Pulmonary Diseases, Leiden University Medical Centre, Leiden, The Netherlands; ²Department of Medicine, Section of Hematology/Oncology, Knapp Center for Biomedica Discovery, The University of Chicago, IL, USA; ³Department of Oncology, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; ⁴Department of Thoracic Oncology, Saitama Cancer Center, Kitaadachi-gun, Japan; ⁵Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁶CHU Bordeaux, Service des Maladies Respiratoires, Bordeaux, France; ⁷CHU de Toulouse, Université Paul Sabatier, Toulouse, France; ⁸Univ. Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille,

CONCLUSIONS

- In VISION the largest study of a MET inhibitor in patients with METex14 skipping NSCLC – tepotinib demonstrated robust and durable efficacy in treatment-naïve and previously treated patients
- In previously treated patients, efficacy was observed regardless of prior therapies, including IO and/or platinum-based CT
- Tepotinib had a manageable safety profile irrespective of line of treatment and prior IO, consisting of mostly mild to moderate AEs, with few leading to discontinuation
- Peripheral edema was the most common AE

INTRODUCTION


- MET activated by exon 14 skipping alterations (METex14 skipping) is reported in 3-4% of patients with NSCLC and is sensitive to MET inhibition 1-4
- Tepotinib is an oral, once daily, highly selective, potent MET inhibitor that has shown clinical activity in MET-driven tumors^{5,6} and is approved in many countries in North America, Europe, South America and Asia, for treating advanced/metastatic
- Here, we report the first analysis of tepotinib according to prior therapies from all patients with METex14 skipping NSCLC in VISION Cohorts A+C (data cut-off: February 20, 2022)
- These data are relevant for clinical practice given that tepotinib was approved by the European Commission for patients with advanced NSCLC harboring METex14 skipping, previously treated with IO and/or platinum-based CT

METHODS

- VISION is a single-arm, Phase II trial of tepotinib in patients with advanced NSCLC harboring METex14 skipping
- Predefined analyses included first line (1L), second line (2L), second or later line (2L+), and patients with METex14 skipping detected by TBx (T+) – the most widely used detection method

Figure 1. Study design, endpoints, and eligibility criteria of VISION

- Key inclusion criteria ≥18 years of age
- Histologically or cytologically confirmed NSCLC
- with METex14 skipping detected by LBx and/or TBx
- ECOG PS 0/1 Prior immunotherapy allowed

Kev exclusion criteria

• Tumors harboring EGFR mutations or ALK rearrangements

Endpoints (data cut-off: Feb 20, 2022)

per RECIST v1.1

• DOR, PFS, OS

Objective response by IRC

• Safety (per NCI-CTCAE v4.03)

- >2 lines of prior therapy
- · Prior use of MET inhibitors

PLAIN LANGUAGE SUMMARY

What is the purpose of this **VISION study analysis?**

- Tepotinib is a type of drug called a MET inhibitor and is currently approved for treating adult patients with advanced NSCLC with a genetic alteration causing MET exon 14 skipping
- Here we assessed how effective tenotinib is in patients who have previously been treated with other anticancer therapies

Who was included in this

- This analysis included 313 patients with MET exon 14 skipping NSCLC who participated in the VISION study; on average, patients were around 72 years old
- Of these, 149 patients were previously treated with other anticancer therapies, including chemotherapy and immunotherapy, and 164 patients had never been treated before for their NSCLC

What were the main findings of this

- Of 149 previously treated patients, tumors disappeared or shrunk in 45% of patients after treatment with tepotinib
- Of these, patients who had previously been treated with either chemotherapy alone, immunotherapy, or had combined treatment with chemotherapy and immunotherapy showed similar responses to treatment with tepotinib
- Of 164 patients who were not treated before, tumors disappeared or shrunk in 56% of patients after treatment with tepotinib

What side effects did patients have during VISION study?

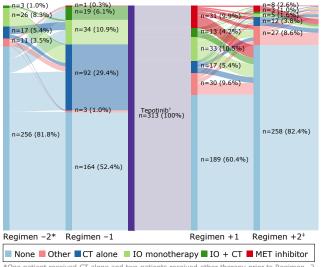
- Most side effects related to tenotinib treatment
- were mild to moderate • Low numbers of previously treated patients (14.1%)

and patients who were not treated before (15.2%)

 Peripheral edema (swelling of the hands and/or lower legs) was the most common side effect

discontinued due to side effects

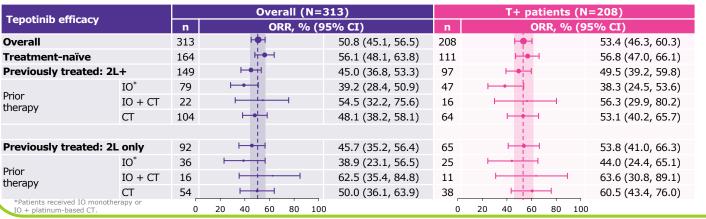
RESULTS


VISION comprises a large population of elderly patients with NSCLC harboring METex14 skipping

- Of 313 patients enrolled, 149 patients were previously treated (median age 70.8 years [range: 41-89]) (Table 1); 61.7% of previously treated patients received tepotinib as 2L and 38.3% as 3L+
- Of these prior treatments, 84.6% of patients had received platinum-based CT, 54.4% had prior IO, and 14.8% had prior combined IO + CT, in any line; scan the QR code below to view patient outcomes with prior therapies (Table S1)
- The most common therapy immediately prior to tepotinib was CT without concurrent IO received by 29.4% of patients; IO (monotherapy or IO + CT) was received by 17.0% of patients (Figure 2)
- 164 patients were treatment-naïve with median age 74.0 years [range: 47–94]

Table 1. Baseline characteristics

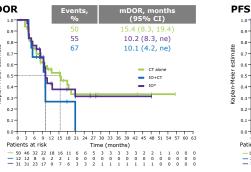
Baseline characteristics		Treatment- naïve (n=164)	Previously treated (n=149)
Median age, years (range)		74.0 (47–94)	70.8 (41–89)
Sex, %	Male	50.6	47.7
	Female	49.4	52.3
Race*, %	White	68.3	55.7
	Asian	30.5	37.6
ECOG PS, %	0	27.4	24.2
	1	72.0	75.8
Smoking history [†] , %	Yes	53.7	40.9
	No	45.7	53.0
Histology, adenocarcinoma, %		79.9	81.2
Enrolled in Europe, %		53.7	43.0
<i>MET</i> ex14 skipping detection	TBx	67.7	65.1
	LBx	57.9	55.7

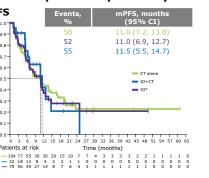

Figure 2. Prior and subsequent therapies

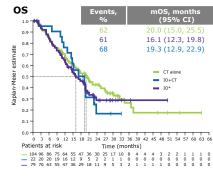
Tepotinib demonstrated robust clinical activity irrespective of prior treatment

- ORR, DOR, PFS, and OS were meaningful in treatment-naïve and previously treated patients, including those who received prior platinum-based chemotherapy and/or immunotherapy (Table 2, Figures 3-4)
- In treatment-naïve patients, ORR was 56.1%, mDOR was 46.4 months, mPFS was 12.6 months, and mOS was 19.1 months; in previously treated patients, ORR was 45.0%, mDOR was 12.4 months, mPFS was 11.0 months, and mOS was 19.6 months
- Efficacy was also clinically meaningful and robust in T+ patients (Table 2, Figure 3)
- ORR for 2L patients who received CT alone as 1L was 50.0% (95% CI: 36.1, 63.9) and 60.5% (43.4, 76.0) in T+ patients (Figure 3)
- ORR in 2L patients with prior IO + CT was 62.5% (35.4, 84.8) and 63.6% (30.8, 89.1) in T+ patients (**Figure 3**)

Figure 3. Objective response rate according to line of therapy




Table 2. Efficacy according to line of therapy


Efficacy	Overall (N=313)		T+ (N=208)			
(IRC)	1L (n=164)	2L (n=92)	2L+ (n=149)	1L (n=111)	2L (n=65)	2L+ (n=97)
ORR, %	56.1	45.7	45.0	56.8	53.8	49.5
(95% CI)	(48.1, 63.8)	(35.2, 56.4)	(36.8, 53.3)	(47.0, 66.1)	(41.0, 66.3)	(39.2, 59.8)
mDOR, months	46.4	12.6	12.4	46.4	12.4	10.2
(95% CI)	(13.8, ne)	(8.3, 20.8)	(9.5, 18.5)	(13.4, ne)	(7.0, 20.8)	(8.3, 18.0)
mPFS, months	12.6	10.9	11.0	15.3	13.7	11.5
(95% CI)	(9.6, 17.7)	(8.2, 13.8)	(8.2, 13.7)	(11.3, ne)	(8.2, 19.4)	(8.2, 16.8)
mOS, months	19.1	20.0	19.6	25.9	20.9	20.4
(95% CI)	(13.7, 23.7)	(15.8, 23.7)	(15.2, 22.3)	(17.5, 36.6)	(17.7, 32.5)	(17.0, 26.8)

- In patients with prior CT alone, mDOR was 15.4 months, mPFS was 11.0 months, and mOS was 20.0 months; in patients with prior IO + CT, mDOR was 10.1 months, mPFS was 11.5 months, and mOS was 19.3 months (Figure 4)
- In T+ patients with prior CT alone, mDOR was 15.4 months, mPFS was 13.7 months, and mOS was 22.3 months; in T+ patients with prior IO + CT, mDOR was 10.1 months, mPFS was 11.5 months, and mOS was 17.1 months
- Scan the QR code below to view efficacy according to line of therapy in L+ patients (**Table S2**)

Figure 4. Overall efficacy according to prior therapies in all previously treated patients

Treatment-related adverse events were mostly mild-moderate across therapy lines

- Overall (N=313), TRAEs occurred in 91.7% of patients, 34.2% had Grade ≥3 TRAEs, and 14.7% discontinued due to TRAEs
- In treatment-naïve patients (n=164), Grade ≥3 TRAEs occurred in 40.9% of patients and 15.2% of patients discontinued due to TRAEs (Table 3)
- In previously treated patients (n=149), Grade ≥3 TRAEs occurred in 26.8% of patients and 14.1% of patients discontinued due to TRAEs; in patients with prior IO, Grade ≥3 TRAEs occurred in 27.2% of patients and 17.3% of patients discontinued due to TRAEs
- Peripheral edema was the most common all-cause AE, occurring in 75.0% of treatment-naïve patients, 68.5% of previously treated patients, and 70.4% of patients with prior IO
- The safety profile of tepotinib was consistent in patients with prior IO (Table 3)

Table 3. Tepotinib safety profile

TRAEs, n (%)	Treatment-naïve (n=164)	Previously treated (n=149)	Prior IO (n=81)			
Any grade	155 (94.5)	132 (88.6)	73 (90.1)			
Grade ≥3	67 (40.9)	40 (26.8)	22 (27.2)			
Leading to dose reduction	64 (39.0)	41 (27.5)	21 (25.9)			
Leading to temporary interruption	79 (48.2)	54 (36.2)	31 (38.3)			
Leading to permanent discontinuation	25 (15.2)	21 (14.1)	14 (17.3)			
All-cause AEs in ≥20% of all patients, n (%)						
Peripheral edema	123 (75.0)	102 (68.5)	57 (70.4)			
Nausea	55 (33.5)	41 (27.5)	21 (25.9)			
Diarrhea	47 (28.7)	43 (28.9)	21 (25.9)			
Hypoalbuminemia	57 (34.8)	44 (29.5)	28 (34.6)			
Blood creatinine increase	46 (28.0)	45 (30.2)	27 (33.3)			
Dyspnea	44 (26.8)	23 (15.4)	14 (17.3)			
Decreased appetite	37 (22.6)	27 (18.1)	17 (21.0)			

The speciment of the sp nowledgements: The authors would like to thank patients, all investigators and co-investigators, and the study teams at all participating centers and at Merck Healthcare KGaA, Darmstadt, Germany. Medical writing and editorial assistance was provided by Pritha Bhunia of Syneos (Pritha Bhunia of S