HIF1A inhibition as a therapeutic strategy to overcome castration-resistance in PTEN-deficient prostate cancer

J. Terzic, M. A. Abu el Maaty, R. Lutzing, A. Vincent, C. Keime, D. Metzger

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.
Centre National de la Recherche Scientifique (CNRS), UMR7104. Institut National de la Santé et de la Recherche Médicale (INSERM), U1258. Université de Strasbourg.

2nd most common cancer affecting men worldwide
- In 2020: >1.4M new cases;
- >560,000 deaths

- Androgen deprivation therapy (ADT) leads to initial tumor regression, but many tumors progress to an androgen-independent state called castration-resistant prostate cancer (CRPC).
- Despite the identification of various tumor cell-intrinsic and extrinsic mechanisms driving castration-resistance, the therapeutic landscape for metastatic CRPC remains insufficient.
- Identification of novel therapeutic targets for the management of CRPC is in demand.

Androgen-deprivation further enhances HIF1α signaling and promotes plasticity of luminal-C cells

Results

1. Experimental strategy

Identification of potential mediators enabling survival under androgen-deprivation conditions by single-cell RNA sequencing

2. Results

Luminal HIF1α inactivation provides durable therapeutic responses to castration

Pharmacological HIF1α inhibition sensitizes PTEN-deficient tumors to androgen deprivation

Conclusions

- Pten^{1cre} mice develop CRPC and are a valuable tool to study resistance mechanisms to ADT.
- HIF1A signaling is further activated in Luminal-C cells of castrated Pten^{1cre} mice and promotes androgen deprivation-induced cellular plasticity.
- Genetic and pharmacological HIF1A inhibition sensitizes prostatic tumors to androgen deprivation.

⇒ HIF1α and ADT combined treatment as a promising strategy to treat CRPC patients