Fluoropyrimidine dose individualization based on pretreatment uracil levels: safety and pharmacokinetic analysis from the Alpe2U study

M. de With^{1*}, J. Knikman^{2*}, A. Baars³, G.-J. Creemers⁴, H.J. Droogendijk⁵, W.E. Fiets⁶, A.L.T. Imholz⁷, L..B.J. Valkenburg-van Iersel⁸, F.J.F. Jeurissen⁹, C.M.P.W. Mandigers¹⁰,

R.H.N. van Schaik¹¹, B.J.C. van den Bosch¹², H. Rosing¹³, J.H. Beijnen^{13,14}, J.J. Swen¹⁵, H. Gelderblom¹⁶, J.H.M. Schellens¹⁷, R.H.J. Mathijssen¹⁸, H.-J. Guchelaar¹⁹, A. Cats²⁰

1] Dept. of Medical Oncology and Clinical Chemistry, Erasmus MC Cancer Institute, Rotterdam, The Netherlands. 2] Div. of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 3] Dept. of Medical Oncology, Hospital Gelderse Vallei, Ede, The Netherlands. 4] Dept. of Medical Oncology, Catharina Hospital, Eindhoven, The Netherlands,

7] Dept. of Medical Oncology, Deventer hospital, Deventer, The Netherlands.

5] Dept. of Internal Medicine, Bravis Hospital, Roosendaal, The Netherlands. 6] Dept. of Internal Medicine, Medical Center Leeuwarden, Leeuwarden, The Netherlands.

8] Dept. of Medical Oncology, Maastricht University Medical Center, Maastricht, The Netherlands. 9] Dept. of Internal Medicine, Haaglanden Medical Center, The Hague, The Netherlands. 10] Dept. of Internal Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands. 11] Dept. of Clinical Chemistry, Erasmus Medical Center, Rotterdam, The Netherlands 12] Dept. of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.

13] Dept. of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. 14] Dev. of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University, Utrecht, The Netherlands. 15] Dept. of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.

16] Dept. of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.

17] Science Faculty, Utrecht University, Utrecht, The Netherlands.

18] Dept. of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

19] Dept. of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.

20] Dept. of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. *Authors contributed equally.

INTRODUCTION

- Risk of fluoropyrimidine-related adverse events (AEs) can be significantly reduced through dose reduction in DPD deficient patients, however still 23% of wild type patients develop severe AEs¹
- DPD is the main metabolizing enzyme of fluoropyrimidines
- In 2020 EMA stated that screening on DPD deficiency should be performed before fluoropyrimidine treatment by:
 - 1] *DPYD* genotyping, or
 - 2] DPD phenotyping by using plasma uracil (U) levels²
- Based on previous studies, patients with U > 16 ng/ml are considered DPD deficient³

PRIMARY OBJECTIVE

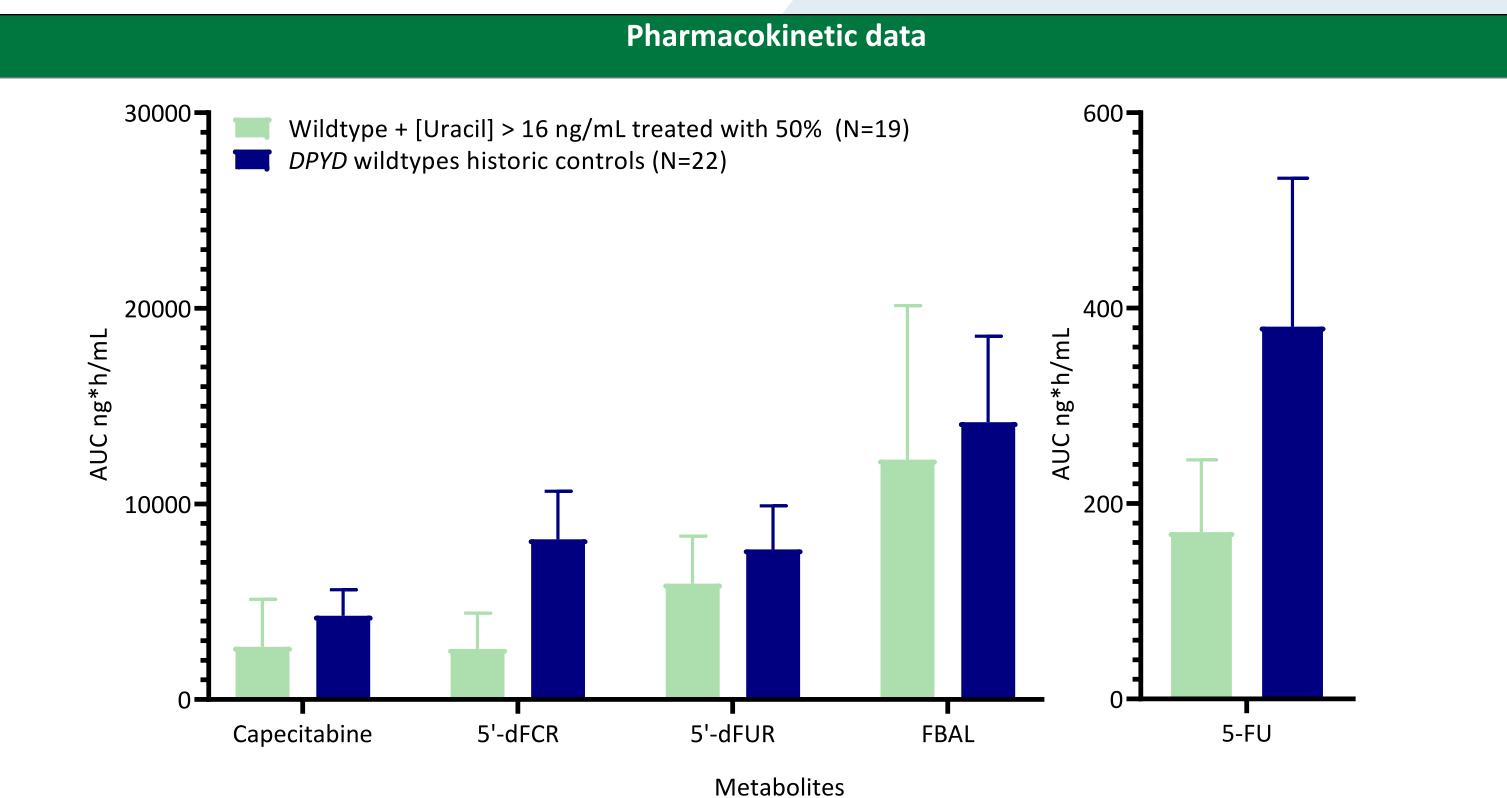
The Alpe2U study (NCT04194957) is the first prospective multicenter study investigating if severe fluoropyrimidine-related AEs could be reduced by a fluoropyrimidine dose individualization based on combined *DPYD* genotype and U levels.

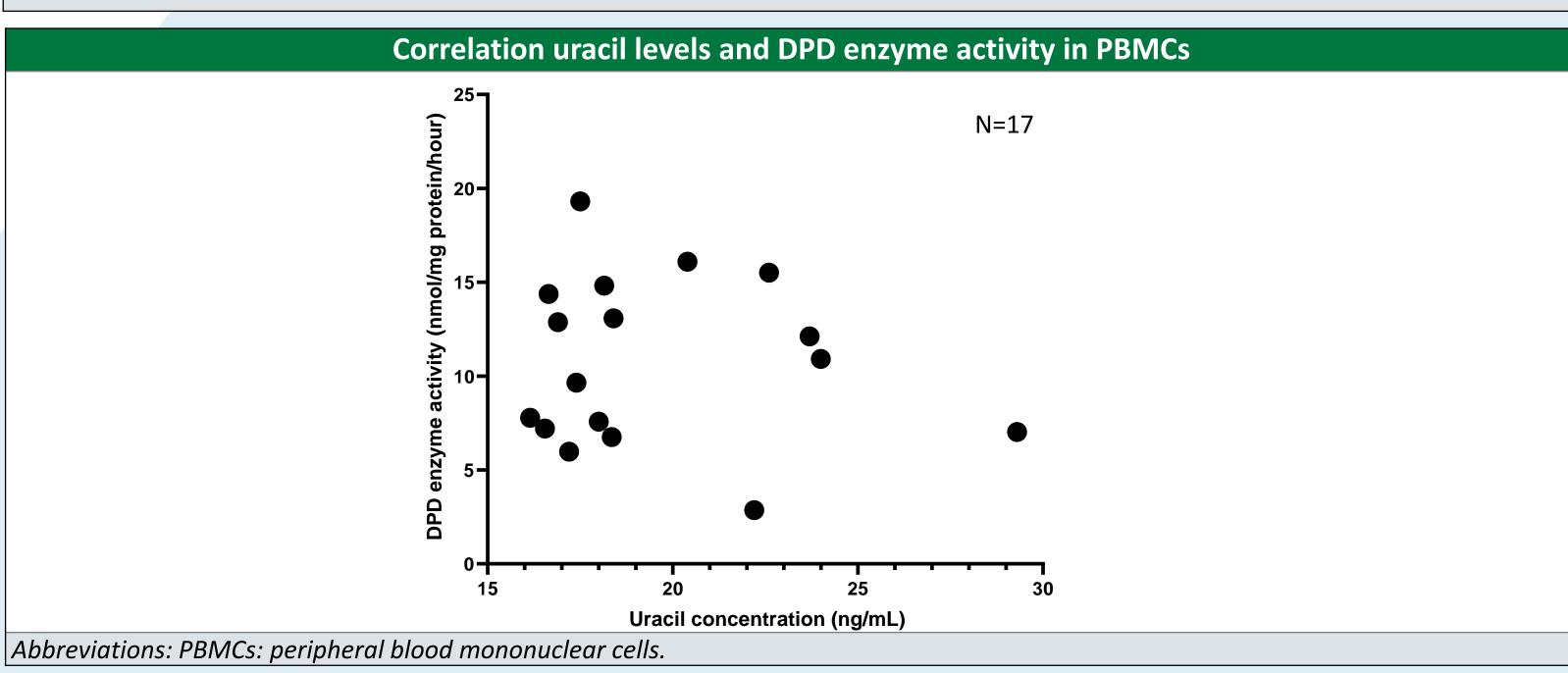
METHODS

- Results of a planned interim-analysis in 654 enrolled patients from 14 **Dutch hospitals are presented**
- Prior to fluoropyrimidine-based treatment, the following was done: 1) genotyping for *DPYD**2A, 2846A>T, 1679T>G and 1236G>A
- 2) measuring U levels in fasting state, between 8-10h AM
- 3) measuring DPD enzyme activity in peripheral blood mononuclear cells (PBMCs)
- Heterozygous variant carriers and DPYD wild types with U > 16 ng/ml received a 50% dose reduction followed by dose titration based on clinical judgement
- Pharmacokinetic sampling of DPYD wild types with U > 16 ng/ml was done in the first treatment cycle and compared with a reference cohort of 22 wild types receiving full dose⁴
- AEs during fluoropyrimidine-treatment were collected
- Uracil levels and DPD enzyme activity in PBMCs were compared

Baseline patients' characteristics **DPYD** wild types with uracil > 16 ng/ml **50%** dose Characteristics n = 23 patients 9 (39.1) Age (years, median, [IQR]) 62.0 [55.5-70.5] **ECOG** performance status (%) 6 (27.3) 13 (59.1) 3 (13.6) BSA (median, [IQR]) 1.91 [1.80-2.05] Primary tumor type (%) 6 (26.1) 11 (47.8) Colorecta 4 (17.4) Esophageal 1 (4.3) 1 (4.3) Cancer stage (%) 1 (4.3) 6 (26.1) Locally advanced 16 (69.6) Metastatic Treatment regimen (%) 5-fluorouracil + oxaliplatin 1 (4.3) Capecitabine monotherapy 5 (21.8) Capecitabine monotherapy + radiotherapy 3 (13.0) 8 (34.8) Capecitabine + oxaliplatin Capecitabine + oxaliplatin + bevacizumab 2 (8.7) Capecitabine + oxaliplatin + trastuzumab 1 (4.3) 1 (4.3) Capecitabine + trastuzumab 2 (8.7) Capecitabine + anastrozole Abbreviations: IQR: interquartile range.

DPYD wild types with	<u> </u>
Characteristics	50% dose n = 23 patients
Uracil	18.40 [17.45-22.60]
Dihydrouracil	151.00 [129.75-163.75]
Uracil/Dihydrouracil – ratio	7.43 [6.36-8.04]
DPD enzyme activity	11.00 [7.60-14.30]
Dose intensity (median % of standard dose, [IQR])	
First cycle	50.0 [50.0-50.3]
All cycles	50.2 [50.0-62.4]
Occurrence of fluoropyrimidine-related AEs (%)*	
CTCAE grade 0	10 (43.3)
CTCAE grade 1	2 (8.7)
CTCAE grade 2	6 (26.1)
CTCAE grade 3	5 (21.7)
* Highest grade during fluoropyrimidine treatment. Pre	liminary results.
Abbreviations: IQR: interquartile range; DPD: dihydropy	rimidine dehydrogenase; AEs: adverse events;
CTCAE: common terminology criteria for adverse events	, , , , , , , , , , , , , , , , , , , ,


Poster ESMO Congress 2022


Mirjam de With m.dewith@erasmusmc.nl 0031 10 70 407 99

M. de With has no conflicts of interest

RESULTS

Abbreviations: AUC: Area under the curve.

CONCLUSION

- Fluoropyrimidine dose individualization based on U levels may be accompanied with high risk of underdosing.
- Severe fluoropyrimidine-related toxicity could not be prevented by pretreatment uracil testing.
- The use of U levels alone for dose individualization of fluoropyrimidines should be reconsidered.

- 1] Henricks et al. Lancet Oncology, 2018.
- 2] European Medicines Agency, EMA recommendations on DPD testing prior to treatment with fluorouracil,
- capecitabine, tegafur and flucytosine, 2020.
- 3] Meulendijks et al., British Journal of Cancer, 2017. 4] Deenen et al., Cancer Chemotherapy and Pharmacology, 2015.