

1687P - Targeted metabolomics reveals dynamic changes and potential therapeutic targets in the serum metabolome of patients receiving adoptive cell therapy with tumor infiltrating lymphocytes

Luke Mantle ^{1,2}, Douglas Millar, Celine Robert-Tissot, Robert Laister, Valentin Sotov, Linh Nguyen, Maysa Vilbert ^{1,2}, Ian Hirsch ^{1,2}, Ian Hirsch ^{1,2}, Frica C. Koch ^{1,2}, Pamela Ohashi, Marcus Butler ^{1,2} and Samuel Saibil ^{1,2} 1Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada 2Department of Medicine, Division of Medical Oncology, University of Toronto, Toronto, Canada

BACKGROUND

- Adoptive cell therapy (ACT) using tumor-infiltrating lymphocyte (TILs) has shown clinical responses in the treatment of metastatic melanoma.
- * Emerging data has demonstrated that levels of circulating metabolites significantly affect T cell function and survival in multiple pre-clinical models of ACT.
- Few studies have examined the circulating metabolome in patients undergoing ACT.
- ❖ We aimed to investigate changes in the serum metabolome in patients with metastatic melanoma undergoing ACT with TIL.

METHODS

- Samples were obtained longitudinally from 9 patients with metastatic cutaneous melanoma undergoing ACT with
- Sample A was obtained prior to lymphodepletion, sample B was collected after lymphodepletion one hour prior

 Table 1: Patient characteristics from 9 cutaneous melanoma patients treated with tumor-infiltrating lymphocytes. to TIL infusion, sample C was obtained 24 hours post TIL infusion and sample D was collected 4 weeks post infusion.
- Serum metabolites were measured using targeted mass spectrometry and differences in metabolites were compared using Random Forest, Multidimensional scaling analysis and the U-Mann-Whitney test.

RESULTS

- Comparison between samples A and B revealed a significant increase only in ortho-hydroxyphenylacetic acid.
- Comparison of samples B to C showed significant decrease in multiple metabolites including Lysophosphatidyl choline (LPC) 16:0 and LPC 18:0.
- Comparison of sample C to D showed a significant decrease of ortho-hydroxyphenylacetic acid and increase in LPC 16:0 and LPC 18:0.
- In ex vivo experiments, human T cells pretreated with LPC 18:0 demonstrated increased proliferation and IL-2 production in a dose dependent manner.

CONCLUSIONS

- ACT with TILs caused dynamic changes in circulating metabolites. Most significantly, a decrease in LPC after TIL infusion suggesting LPC uptake by the infused T cells.
- ❖ LPC has been shown to be involved in CD8+ memory T cell maintenance. Exposure to LPC pre-infusion may potentially improve infused CD8+ T cell IL-2 production and engraftment warranting further investigation.

Patient		Sex	Age	M stage	Previous Treatment			
	1	M	43	M1b	None			
	4	M	M 64 M:		Ipi/Nivo, Carbo-tax			
	7	F	35	M1c	Carbo-tax, Ipi			
					Dabrafenib/Trametinib, Ipi,			
	16	M	48	M1c	Pembro Ipi, Pembro			
	22	M	49	M1c				
	19	M	35	M1c	DTIC, Ipi, Pembro, Carbo-tax			
					DTIC, Ipi, Pembro, IL-2			
	29	F	34	M1c	(injections)			
	8	M	61	M1c	Ipi/Nivo, Pembro			
					Nivo, anti-PD-1/anti-GITR,			
	9	M	61	M1c	Carbo-tax			

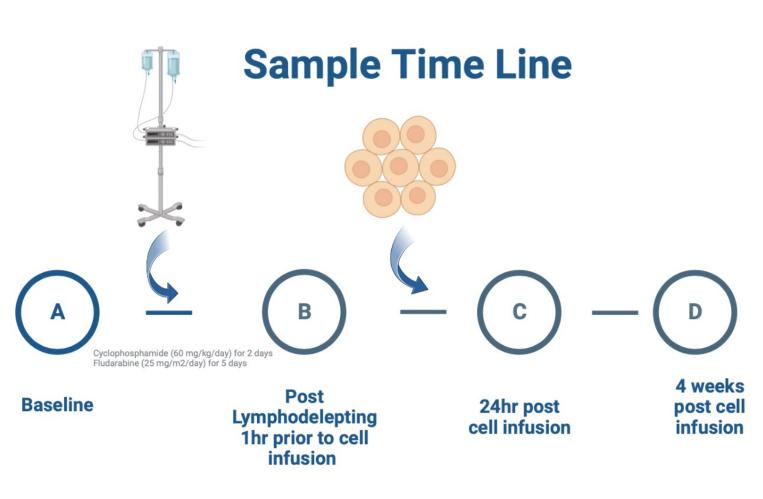


Fig 1: Representation of when serum metabolic samples were obtained. Sample A (baseline), B post lymphodepletion 1hour prior to cell infusion, C 24 hours post infusion, D 4 weeks post infusion

A VS D											
Metabolite			it	p.value		`-LOG10(p)`		FDR			
Ortho-Hydroxyphenylacetic acid			3	7.5E-05		4.1		5.7E-03	T-Test FDR < 0.1		
Citrulline		5.2		8.2E-05		4.1		5.7E-03	1-16361 DK < 0.1		
Hypoxanthine				1.6E-04		3.8		7.4E-03			
3 vs C											
Metabolite		tat p.valu		lue	`-LOG10(p)`		FDR]		
LysoPC(16:0)	3.	3.0 8.3E		-03	2.1E+00		0.8				
Uridine	2.	2.7 1.7E-C		-02	1.8	1.8E+00		T-Test	T-Test Raw p-value < 0.05		
LysoPC(18:0)	2.	.6 2.0		-02 1.7		7E+00 0.8					
Chenodeoxyglycocholic acid	-2.	2.5 2.2		E-02 1.7		'E+00	0.8				
5'-Methylthioadenosine		2.4 3.0		E-02 1.5		E+00 0.8					
C vs D											
Metabolite			stat	p.v	alue	`-LOG1	.0(p)`	FDR			
Ortho-Hydroxyphenylacetic acid			9.6 4.7		'E-08	7.3		6.6E-06			
Citrulline			5.5 7.6		E-06	5.1		4.0E-04			
LysoPC(16:0)			6.4 8.5		E-06	5.1		4.0E-04	T-Test FDR < 0.05		
LysoPC(18:0)			5.0 1.3		E-04	3.9	9	4.7E-03			
6 1 1					_		4.05.00				

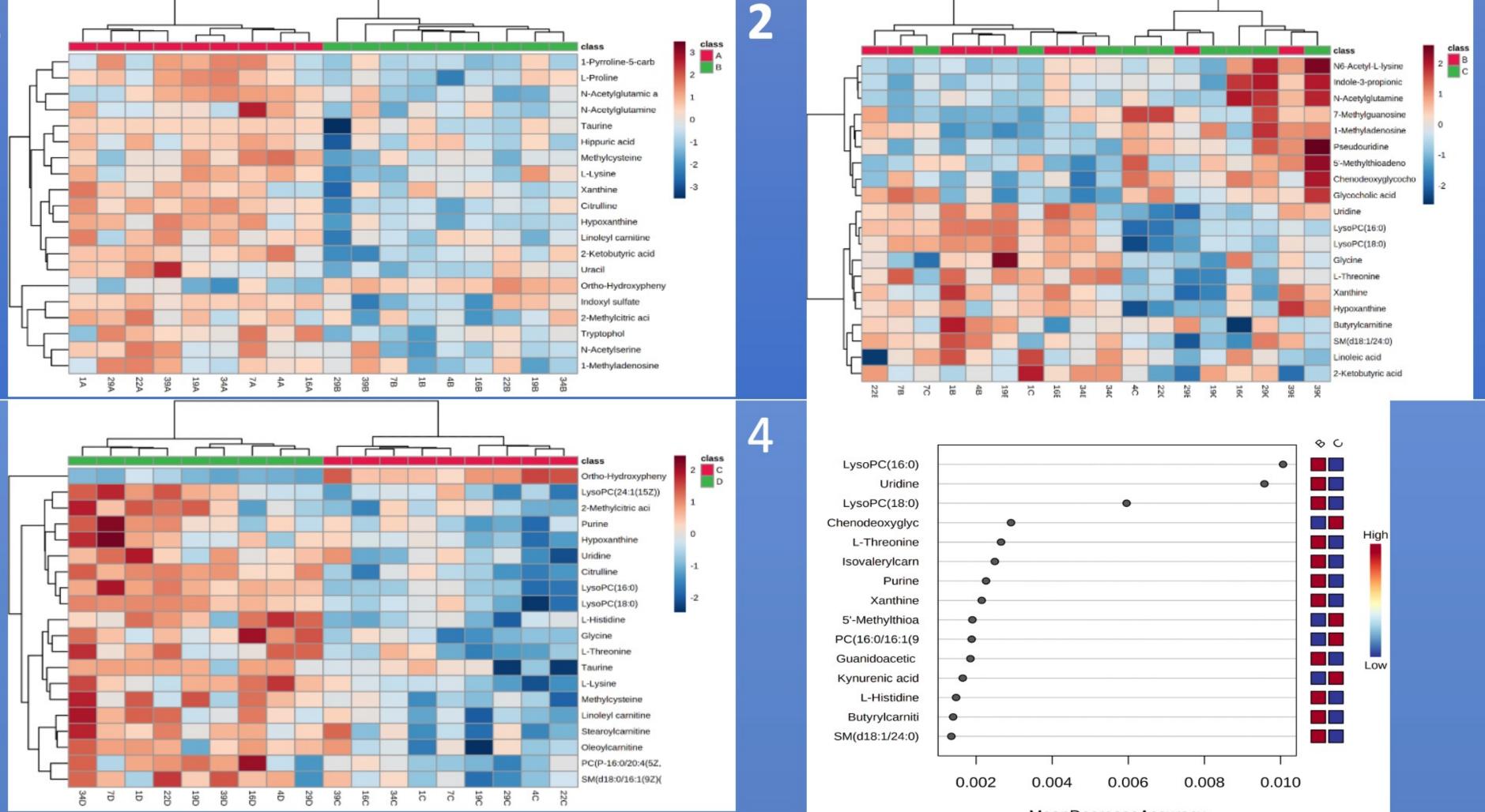
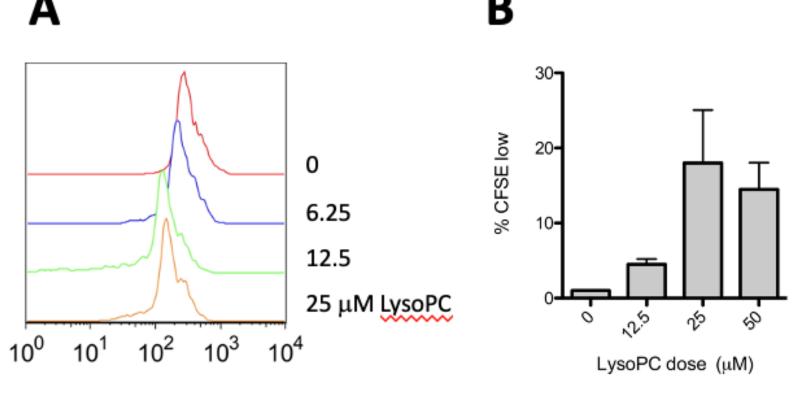



Fig 3: PANEL (1) Heatmap Top 20 metabolites A vs B, (2) Heatmap for B vs C, (3) Heatmap C vs D, (4) Random Forest B vs C.

C vs D

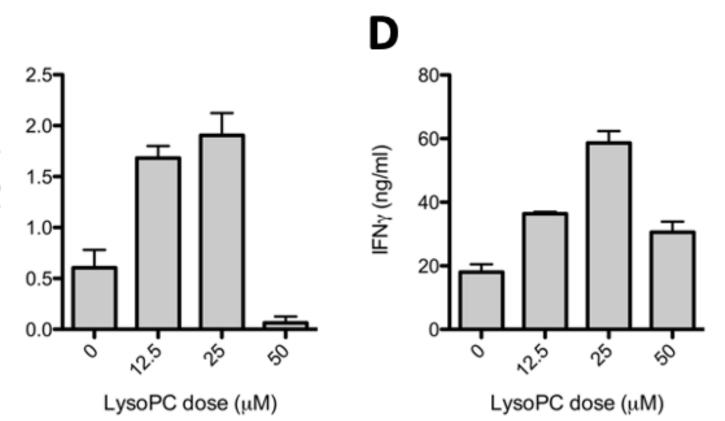


Fig. 4. LysoPC enhances proliferation of human PBMC. Heathy donor PBMC were labeled with CFSE and stimulated on plate-bound anti-CD3 (100µg/ml) and anti-CD28 (20 µg/ml) with increasing doses of LysoPC (or equivalent dilution of vehicle alone) for 3 days. (A) Proliferation was assessed by flow cytometry on day 3 as percent cell division to CFSE low fluorescence. (B) Quantification of proliferation as percent CFSE-low divided cells (C,D) Culture supernatants were assayed after 24hrs for IL-2 or after 72 hrs for IFNy by ELISA.