Phase 2 Neoadjuvant Trial of the anti-B7-H3 Antibody, Enoblituzumab, in Men with Localized Prostate Cancer: Safety, Efficacy, and Immune Correlates

Eugene Shenderov^{1-2\$}, Angelo De Marzo⁴, Tamara L. Lotan⁴, Hao Wang³, Su Jin Lim³, Mohammed Allaf⁵, Karim Boudadi¹, Carolyn Chapman¹, Tanya O'Neal¹, Francine Chen⁶, Paul Moore⁶, John Muth⁶, Kristina Sorg⁷, Andrew M. White⁷, Briana Hudson⁷, Sarah E. Church⁷, Trinity Bivalacqua⁵, Ashley Ross⁸, Christian Pavlovich⁵, Charles Drake⁹, Drew Pardoll¹⁻², Emmanuel S. Antonarakis¹⁻²

¹ Department of Oncology or ²The Bloomberg-Kimmel Institute for Cancer Immunotherapy or ³Biostatistics and Bioinformatics or ⁴Department of Pathology or ⁵Urologic Oncology at Johns Hopkins University School of Medicine, Baltimore, MD, USA; ⁶MacroGenics, Inc, Rockville, MD, USA; ⁷NanoString Technologies Inc, Seattle, WA, USA; ⁸Urology, Northwestern, Chicago, IL, USA; ⁹Immuno-Oncology, Janssen, Horsham, PA, USA

BACKGROUND

- B7 homolog 3 (B7-H3), a member of the B7 superfamily, is highly expressed (relative to PD-L1 and PD-L2) in prostate cancer, and is associated with rapid biochemical recurrence and early metastases.
- B7-H3 may play immune suppressive and tumor-autonomous roles that favor cancer growth
- Enoblituzumab (MacroGenics, Inc.) is an investigational humanized Fc-optimized B7-H3-targeting antibody that induces antibody-dependent cellular cytotoxicity (ADCC).

STUDY HYPOTHESIS

 Neoadjuvant enoblituzumab treatment in patients with highrisk localized PCa will lead to reduced biochemical recurrence following prostatectomy, by modulating T cell immunity in the tumor microenvironment (TME) and also direct tumor killing via

STUDY DESIGN

 Phase 2 single-center, single-arm, neoadjuvant trial, men with operable intermediate- and high-risk localized prostate cancer (Grade Groups 3-5) were enrolled to evaluate the safety, antitumor efficacy, and immunogenicity of enoblituzumab when given prior to prostatectomy. Patients received enoblituzumab (15 mg/kg IV weekly x 6) prior to surgery. Prostate glands were harvested 2 weeks after the last enoblituzumab dose, and were examined for pathologic and immunologic endpoints. The coprimary outcomes were safety and PSA0 at 1 year post-op.

Key Inclusion Criteria:

• Histological adenocarcinoma; clinical stage T1c-T3b, N0, M0; Gleason sum 7-10; at least 2 positive cores; prior decision to undergo radical prostatectomy; adult male >18 years of age; ECOG performance status 0-1

Key Exclusion Criteria:

• Prior hormones, biologics, or chemotherapy for prostate immunotherapy/vaccine therapy for prostate cancer; history of autoimmune disease requiring systemic immunosuppression

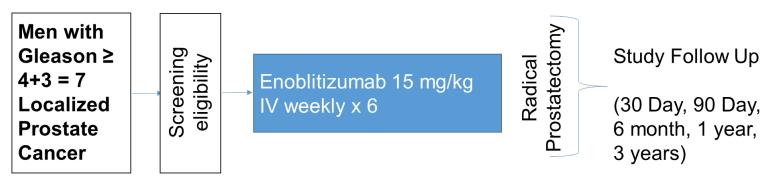


Figure 1. Study schema for the neoadjuvant enoblituzumab clinical trial (NCT02923180).

Table 1. Baseline patient demographics and clinical characteristics

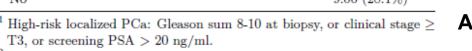
treatment

Grade Group / Gleason sum at Prostatectom

of extraprostatic extension (Prostatectomy)

of Seminal Vesicle invasion (Prostatectomy)

Pathological (surgical) stage


Positive lymph nodes (Prostatectomy)

P=1.55e-19

-1.0

-0.5

	Overall
	(N=32)
Age (years)	
Mean (SD)	63.1 (6.95)
Median [Min, Max]	64.0 [48.0, 74.0]
Age >= 65 (years)	
Yes	15.0 (46.9%)
No	17.0 (53.1%)
Race	
White	30.0 (93.8%)
Black	1.00 (3.1%)
Asian	1.00 (3.1%)
Other	0 (0%)
Smoking History	0.00 (00.10)
Yes	9.00 (28.1%)
No	23.0 (71.9%)
Family Prostate Cancer History	► 00 (01 00d)
Yes	7.00 (21.9%)
No	25.0 (78.1%)
PSA > 10 at Diagnosis (ng/mL)	15.0 (10.00)
Yes	15.0 (46.9%)
No	17.0 (53.1%)
Median Time From Study Entry to Prosta	
Mean (SD)	7.00 (0.392)
Median [Min, Max]	6.86 [6.57, 8.29]
ECOG	
0	31.0 (96.9%)
1	1.00 (3.1%)
BMI	0.00 (10.00)
Normal (BMI 18.5 – 24.9)	6.00 (18.8%)
Overweight (BMI 25.0 – 29.9)	14.0 (43.8%)
Obese (>= 30.0)	12.0 (37.5%)
Grade Group / Gleason sum at biopsy	0 (004)
Grade Group 2 Grade Group 3	0 (0%)
Grade Group 4	5.00 (15.6%) 11.0 (34.4%)
Grade Group 5	16.0 (50.0%)
-	10.0 (00.070)
Gleason Sum at biopsy 7	5.00 (15.6%)
8	11.0 (34.4%)
9-10	16.0 (50.0%)
	10.0 (00.070)
Previous Therapy Yes	0 (0%)
No	32.0 (100%)
Stage >= T3 at Initial Diagnosis	02.0 (10070)
Yes	23.0 (71.9%)
No	9.00 (28.1%)
High-risk localized PCa	2.00 (2012/0)
	24 0 (00 004)
Yes	31.0 (96.9%)
No	1.00 (3.1%)
Very high-risk (VHR) localized PCa	00.0 (54.004)
Yes	23.0 (71.9%)
No	9.00 (28.1%)

Verv high-risk (VHR) localized PCa: primary Gleason pattern of 5 at biopsy, ≥ 5 biopsy cores with Gleason sum 8-10, or multiple individual high-risk features (i.e. Gleason sum 8–10 and PSA >20)

Figure 4. (A) Volcano plot of tumor region protein expression changes pre-treatment post-treatment versus (prostatectomy) by Nanostring GeoMx Digital Spatial Profiling. X-axis shows the log2-transformed fold-change (FC) in expression and y-axis shows -log10transformed unadjusted p-values. Proteins that remain significant after Benjamini Hochberg (BH) (adjusted p < 0.01) are in $\stackrel{\sim}{-} 20$ shades of blue, with dark blue indicating absolute value of FC > 2 and light blue indicating absolute value of $FC \le 2$. (B) CD8A, GZMB, PD-L1, and PD1 biopsy (preenoblituzumab) versus prostatectomy (post-enoblituzumab) protein expression. P values shown are from a mixed linear model post BH adjustment.

RESULTS

9.00 (28.1%)

15.0 (46.9%)

17.0 (53.1%) 0(0%)

15.0 (46.9%)

8.00 (25.0%)

31.0 (96.9%)

19.0 (59.4%)

22.0 (68.8%)

4.00 (12.5%) 28.0 (87.5%)

0 (0%) 32.0 (100%)

32.0 (100%)

PDL1

PD1

IDO1

CD68 STING

`Ki67

Table 3. Gleason Group Change of Treated and 1:1 Matched (grade group, stage, margins, block age [within 2 years], age [within 2 years], and self reported race) Untreated **Prostatectomy Controls**

	Control Prostatectomy 1:1 Matched	Treated Prostatectomy	Overall
	(N=32)	(N=32)	(N=64)
Net Group Grade Change (RP	P-Biopsy)		
< 0 (Downgrade)	7.00 (21.9%)	16.0 (50.0%)	23.0 (35.9%)
= 0 (No Change)	13.0 (40.6%)	12.0 (37.5%)	25.0 (39.1%)
> 0 (Upgrade)	12.0 (37.5%)	4.00 (12.5%)	16.0 (25.0%)

Table 4. McNemar Test of Association Between Treatment and Gleason Grade Group Change. P=0.0159.

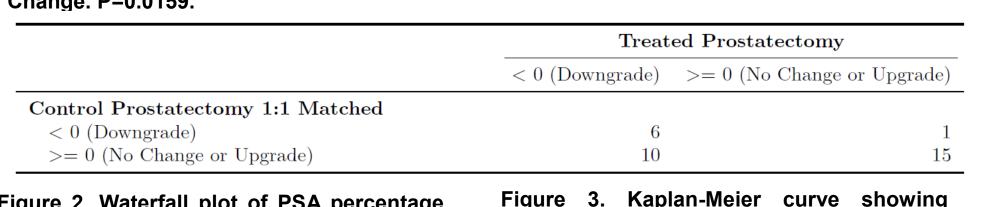


Figure 2. Waterfall plot of PSA percentage change from screening prior to radical prostatectomy. PSA = prostate-specific

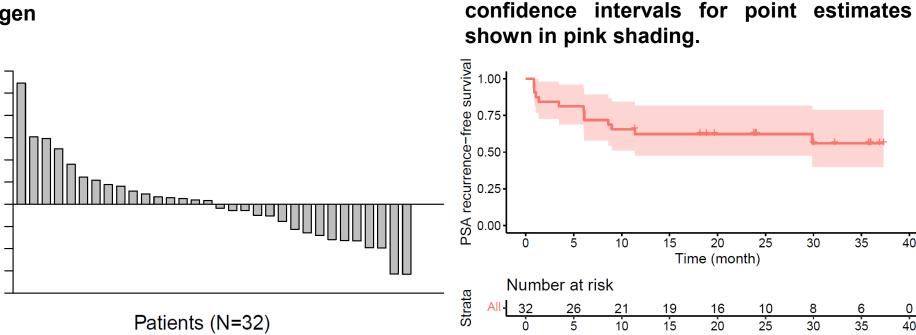
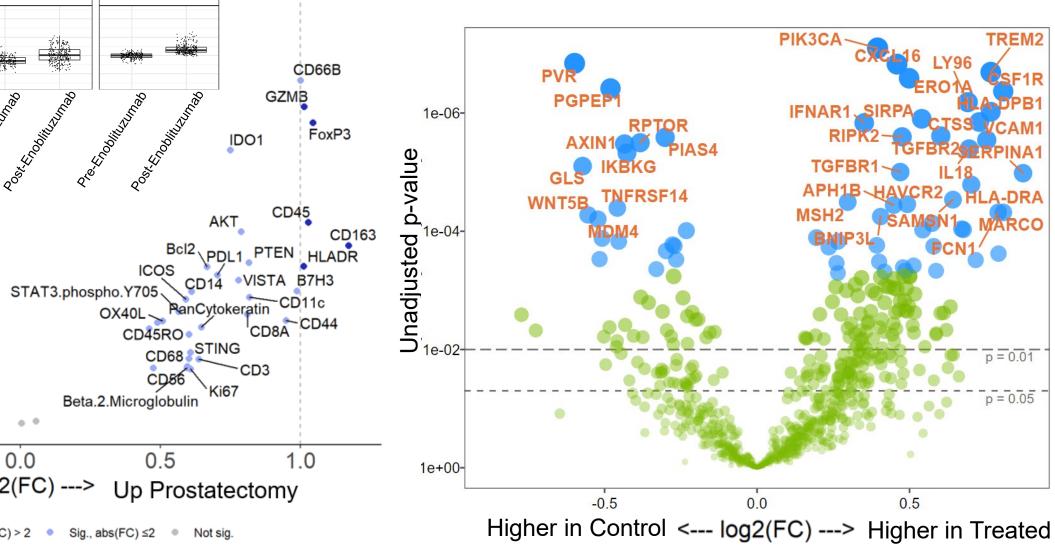



Figure 5. Volcano plot of tumor region mRNA expression changes of matched untreated control prostatectomies versus post-treatment prostatectomies by Nanostring PanCancer IO 360 analysis. Genes that remained significant after Benjamini and Yekutieli False Discovery Rate (FDR, adjusted p < 0.01) are in blue and labeled).

median time-to-PSA-recurrence (PSA ≥ 0.2

ng/mL) after radical prostatectomy. 95%

SUMMARY

- A total of 32 patients were enrolled
- Grade 3/4 drug-related adverse events occurred in 12% of patients; no surgical delay due to AEs.
- One patient developed a grade-3 infusion reaction, and one

immune myocarditis that improved with steroids. Pre-prostatectomy PSA declines of >10% were observed in

- of patients (95% CI: 20-52%).
- PSA0 at 1 year post-op was seen in 66% of men (95% CI: 48-
- Median time to PSA recurrence was not reached (95% CI: 9.4 months – NE).
- Gleason grade group changes were significantly associated with treatment compared to 1:1 matched controls.
- Exploratory tumor microenvironment profiling by NanoString GeoMx spatial proteomics and PanCancer IO 360 mRNA expression analysis revealed evidence of post-treatment upregulation of CD8+ T cells, PD-1/PD-L1, and immune activation (granzyme B, interferon signaling, myeloid inflammation).

Overall, inhibition of B7-H3 with enoblituzumab demonstrated favorable safety and encouraging activity in prostate cancer patients. Preliminary data suggest robust intratumoral induction (adaptive upregulation) of immune checkpoints, T cell activation, and myeloid inflammation

LIMITATIONS

- Small sample size
- Short treatment time of 6 weeks of therapy
- Preliminary correlative data still being analyzed

REFERENCES

- Benzon et al. Prostate Cancer Prostatic Dis. 2016 Nov 1.
- Powderly J, et al. SITC abstract 2015.
- Roth et al. Cancer Res 2007 Aug 15;67(16):7893-900.

ACKNOWLEDGEMENTS

Study support provided by:

Disclosures

E. Shenderov is founder and CEO of LifeImmune, Inc; has received clinical trial institutional research funding from Macrogenics, and has served as a consultant for Firstthought.io and Guidepoint Global.

Study contact: Eugene.Shenderov@jhmi.edu

<--- log2(FC) ---> Up Prostatectomy

0.0

Poster #627P