#1154P Circulating tumor DNA analysis integrating tumor clonality detects minimal residual disease in resectable nonsmall-cell lung cancer

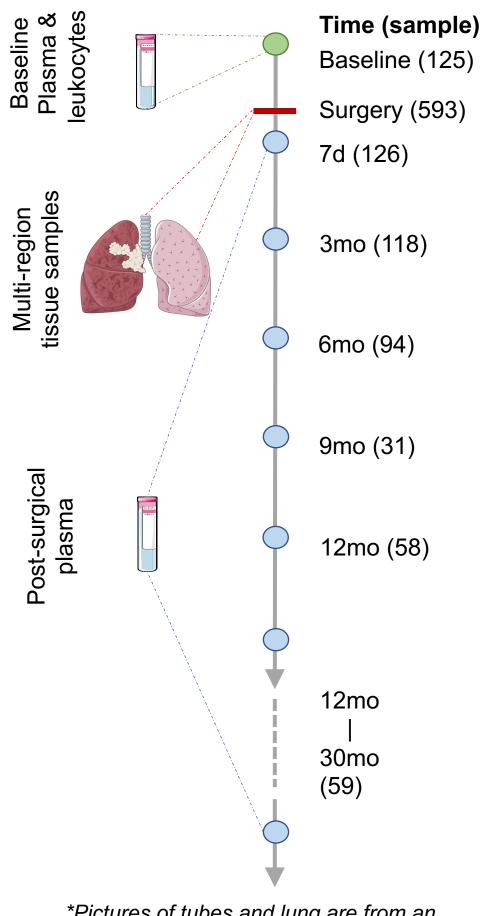
Siwei Wang¹, Min Wu², Ming Li¹, Hua Bao², Feng Jiang¹, Jie Wang¹, Xue Wu², Yang Shao^{2,3}, Lin Xu¹, Rong Yin^{1*} ¹Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China; ²Geneseeq Research Institute, Nanjing Geneseeq Technology Inc., Nanjing, China; ³School of Public Health, Nanjing Medical University, Nanjing, China. * Corresponding author.

Background

- Circulating tumor DNA (ctDNA) has been proven as a marker for detecting minimal residual disease (MRD) in mid-to-late stage non-small-cell lung cancers (NSCLCs) that received radio-, chemo-, immuno-, and/or targeted therapies. ^{1,2,3}
- The usefulness of ctDNA in monitoring MRD in resectable stage I-III NSCLC patients after curative surgeries has not been validated.
- It also remains not fully understood whether tracking clonal evolution of tissues in ctDNA could further improve the risk stratification.³
- We attempt to evaluate MRD using ctDNA and tumor clonality information in NSCLC patients that received surgeries with curative intent.

Methods

- We profiled tissue mutations of 127 patients with stage I-III NSCLCs in the Lung Cancer Heterogeneity **Tempo-spatial** (LuCaTH) prospective cohort, and reconstructed individual clonal phylogenetics based on a total of 591 tissue samples.
- We collected plasma samples at baseline, 7 days post surgery, and every 3 months thereafter, and performed deep targeted sequencing (median: 4086X) on a total of 611 plasma samples using a panel covering 425 cancer-associated genes.
- All patients were monitored for at least two time points after surgeries and followed up for a median of 894 days.
- Plasma mutations were matched to tissue profiles, polished with a control pool of healthy individuals, and filtered for clonal mutations and highly confident subclonal mutations.


References

1. Chaudhuri, Aadel A., et al. Cancer discovery 7.12 (2017): 1394-1403. 2. Pécuchet, Nicolas, et al. PLoS medicine 13.12 (2016): e1002199. 3. Abbosh, Christopher, et al. Nature 545.7655 (2017): 446-451.

Disclosure

M.W., H.B., X.W., and Y.S. are employees of Nanjing Geneseeq Technology Inc.

Figure 1. Overview of sample collection and patient demography

*Pictures of tubes and lung are from an online librarv⁴

Figure 2. Detection of ctDNA at different pathological stages

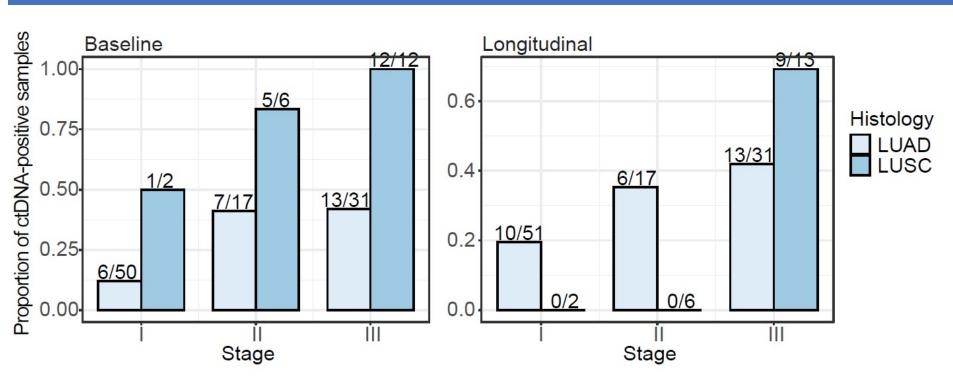
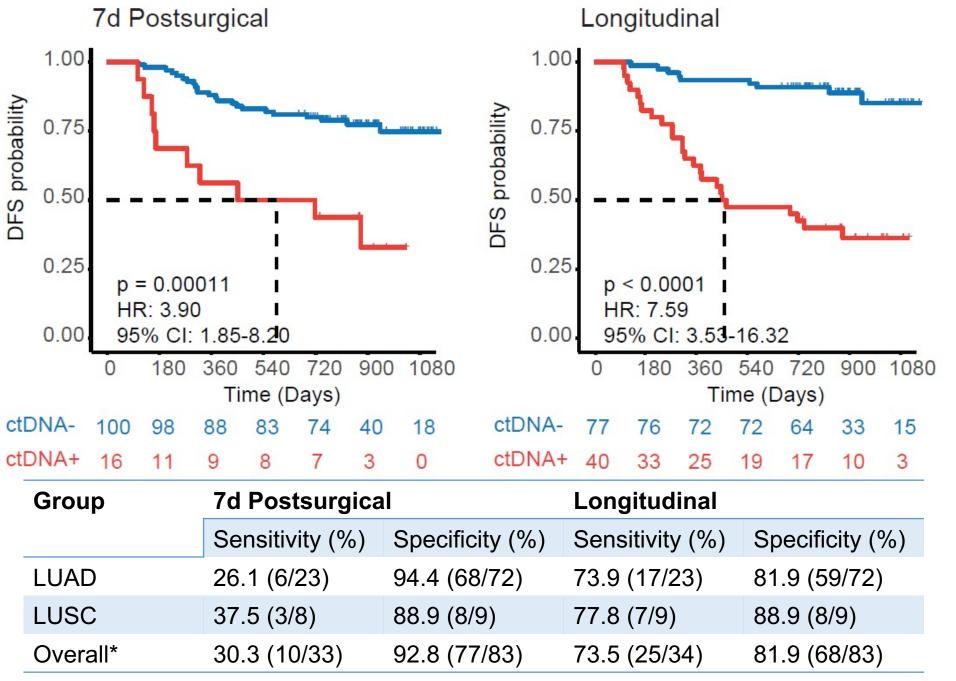
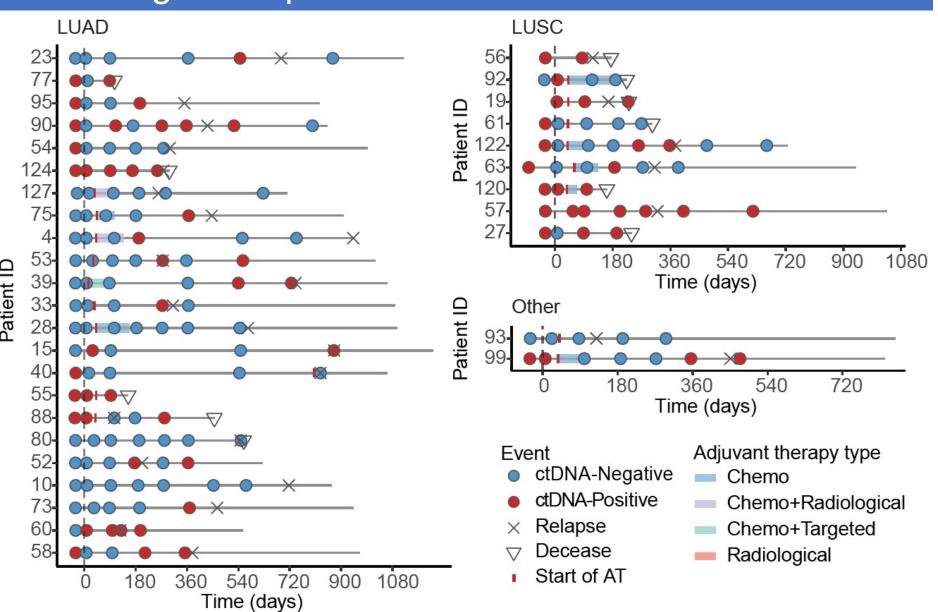



Figure 2: ctDNA was more frequently detected in patients with more advanced diseases both pre- and post-surgically.

4. smart.servier.com

Characteristics	Patients (n = 127)
Age (years)	
Mean ± SD	62.2 ± 8.3
Median (min - max)	63 (39 - 79)
Sex	
Female	55 (43.3%)
Male	72 (56.7%)
Smoking history	
Ever	33 (26.0%)
Never	94 (74.0%)
Histology	
LUAD	100 (78.7%)
LUSC	21 (16.5%)
Other	6 (4.8%)
Focality	
Multifocal	44 (34.6%)
Unifocal	83 (65.4%)
Stage	
I	55 (43.3%)
II	24 (18.9%)
III	47 (37.0%)
IV	1 (0.8%)
Lymph node metastasis	
Positive	57 (44.9%)
Negative	70 (55.1%)


Figure 3. Post-surgical ctDNA detection indicated higher risk of relapse

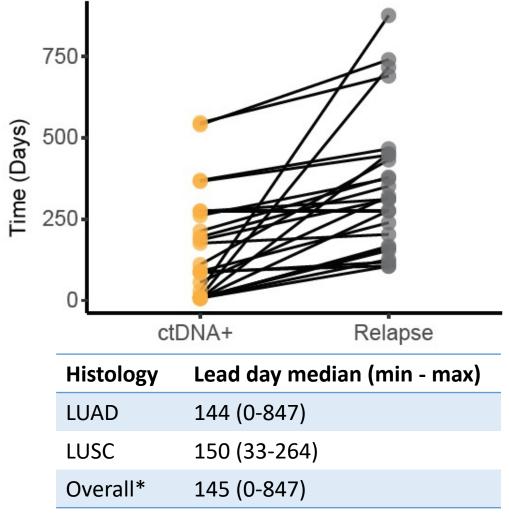

**including other types of pathological histology*

Figure 3: ctDNA detection at 7 days post surgeries and during longitudinal monitoring indicated higher risk of relapse (HR = 3.90 & 7.59, respectively). Longitudinal ctDNA monitoring achieved 73.5% sensitivity for predicting relapse occurrence while maintaining 81.9% specificity.

Figure 4. Detection of ctDNA during longitudinal monitoring in relapse cases

Figure 5. ctDNA detection led radiological relapse

*including other types of pathological histology Figure 5: ctDNA detection during longitudinal monitoring led radiological relapse by a median of 144 days in LUAD cases and 150 days in LUSC cases.

Results

- Both baseline and postsurgical ctDNA were more frequently detected in patients with more advanced diseases.
- The detection of postsurgical ctDNA at 7 days and during longitudinal monitoring indicated higher risk of relapse (HR: 3.90 and 7.95; P = 0.00011 and P < 0.0001, respectively).
- ctDNA detection during longitudinal monitoring had 73.5% sensitivity at 81.9% specificity for predicting relapse occurrence in the investigation period.
- ctDNA detection during longitudinal monitoring led radiological relapse by a median of 145 days.

Conclusions

ctDNA analysis integrating tumor clonality may provide evidence for minimal residual disease in NSCLC patients who receive curative surgeries.