Prevalence of NTRK1/2/3 fusions in dMMR/MSI metastatic colorectal cancer (Poster n°444P)

Magali Svrcek (1, 2), Raphael Colle (2, 3), Anne Cayre (4), Léo Mas (1, 2), Pierre Bourgoin (1, 2), Romain Cohen (2, 5), Thierry André (2, 3), Frédérique Penault-Llorca (4). Nina Radosevic-Robin (4)

- (1) Sorbonne Université, Department of Pathology, Saint-Antoine Hospital, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France; (2) Sorbonne Université, INSERM UMRS_938, Microsatellite instability and cancer, Saint-Antoine research center, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France, SIRIC CURAMUS
- (3) Sorbonne Université, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France
- (4) University Clermont Auvergne, INSERM U1240, Centre Jean Perrin, Department of Pathology, 58 rue Montalembert, 63011 Clermont-Ferrand, France.

Background:

Inhibitors of tropomyosin receptor kinase (TRK) have shown promising activity against neurotrophic TRK (NTRK) fusion-driven cancers. NTRK gene fusions are observed in less than 1% of colorectal cancers (CRCs). CRCs harboring wild-type BRAF, KRAS and MisMatch Repair deficiency (dMMR)/MicroSatellite Instability (MSI) due to MLH1 hypermethylation have been associated with NTRK fusions in small cohorts of non-metastatic tumors.

We evaluated the frequency and associated clinical characteristics of NTRK fusions among dMMR/MSI metastatic CRCs (mCRCs) patients.

Methods:

Tumor samples of dMMR/MSI mCRC pts were obtained from a French multicenter retrospective cohort and from a single-center cohort of pts treated with immune checkpoint inhibitors (ICI).

Clinico-pathological data including KRAS and BRAF v600E status, MMR protein and MLH1 methylation status were available for all pts.

All samples were screened for:

*TRK expression by **immunohistochemistry (IHC)** using a pan-TRK antibody (clone EPR17341, Abcam; positivity: 1% of labeled tumor cells)

*NTRK1/2/3 gene rearrangements, by **fluorescent in situ hybridation (FISH)** (sonde Zytolight SPEC NTRK dual-color Break
Apart, Zytovision; threshold of 15% positive nuclei)

*Targeted RNAseq (FusionPlex® Lung SK0133 ARCHER kit) was performed on IHC or FISH-positive and doubtful cases.

Results:

187 patients with dMMR/MSI CRC (including n=120 patients having received

- 42 patients with paired primary tumor
- 152 patients with isolated sample (metastasis or primary tumor 1 patient with 2 primary tumors
 - ↓ ...

IHC: 5/10 (cytoplasmic pan-TRK immunostaining) (Figure 1)

FISH: 10/187 (including 4 patients with ICI) (Figure 2)

NTRK1: 8; NTRK3: 2

Targeted RNA sequencing: 7/10 (1 case with insufficient RNA quality)

TMP3-NTRK1: 3; LMNA-NTRK1: 2;

ETV6-NTRK3: 1; EML-NTRK3: 1)

Frequency of

NTRK1/2/3

fusions:

5.3%

Figure 1: Pan-Trk-positive immunohistochemistry (x400 magnification) in one case displaying strong, diffuse cytoplasmic staining. Figure 2: This case harbored NTRK1 fusion by FISH. Archer assay detected LMNA-NTRK1 fusion transcript.

N° patient	Lost MMR protein	MLH1 promoter methylation	KRAS status	BRAF status	Lynch versus sporadic	ICI	anti- pan- TRK	FISH NTRK	Partner gene										
										1	MLH1/PMS2	1	WT	WT	Sporadic	0	1	NTRK1	TPM3-NTRK1
										2	MLH1/PMS2	1	WT	Mutated	Sporadic	0	0	NTRK1	0
										3	MLH1/PMS2	1	WT	WT	Sporadic	0	0	NTRK1	TPM3-NTRK1
4	MSH2/MSH6	NAp	WT	WT	Lynch	0	0	NTRK1*	0										
5	MLH1/PMS2	1	WT	WT	Sporadic	0	0	NTRK3	ETV6-NTRK3										
6	MLH1/PMS2	1	unknown	WT	Sporadic	0	1	NTRK1	LMNA-NTRK1										
7	MLH1/PMS2	1	WT	WT	Sporadic	1	1	NTRK1	LMNA-NTRK1										
8	MLH1/PMS2	1	WT	WT	Sporadic	1	1	NTRK3	EMLA-NTRK3										
9	MSH6	NAp	Mutated	WT	Lynch	1	0	NTRK1*	Failure (insufficient RNF quality)**										
10	MLH1/PMS2	1	WT	WT	Sporadic	1	1	NTRK1	TPM3-NTRK1										

Table 1: Characteristics of tumors harboring NTRK fusions: eight tumors were sporadic with *MLH1* hypermethylation and two had germline MMR mutations (lynch syndrome).

Among patients receiving ICI: 3 objective response (iRECIST) (2 complete and one partial responses with 25 to 54 months of follow-up); 1 primary resistance.

- * For these two cases, NTRK1 rearrangement was heterogeneous, with 10 to 15% of nuclei displaying « split-apart signals ».
- ** New tissue extraction is in progress for this case.

Conclusion:

- Frequency of NTRK1/2/3 fusions was 5.3% in our dMMR/MSI mCRCs cohort.
- NTRK fusions could be not restricted to sporadic cases. NTRK fusions in Lynch syndrome's setting need to be further investigated.
- The diagnostic accuracy of pan-TRK IHC was low.
- Optimal testing algorithms for theranostic purpose remain to be defined in this setting.

Corresponding e-mail author: magali.svrcek@aphp.fr

This study received support from Bayer.

Conflicts of interest: none