

Characterization of the inflammatory tumor microenvironment composition in brain metastases after failure of immune checkpoint inhibitor therapy

Angelika M. Starzer (1,2), Markus Kleinberger (1), Katharina Feldmann (1,2), Judith Kreminger (1,2), Stefan Traint (1,2), Ariane Steindl (1), Georg Widhalm (3), Brigitte Gatterbauer (3), Karin Dieckmann (4), Matthias Preusser (1,2), Anna S. Berghoff (1,2)

1 Department of Medicine I, Division of Oncology, Medical University of Vienna, Austria, 2 Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Austria, 3 Department of Neurosurgery, Medical University of Vienna, Austria, 4 Department of Radiotherapy, Medical University of Vienna, Austria

Background

Immunotherapy (IO) is an important pillar in the treatment of various advanced solid cancers, but resistance is frequent. We aimed to characterize the inflammatory tumor microenvironment of patients with brain metastasis (BM) progression after IO to gain insight on potential inflammatory resistance mechanisms.

Methods

Patients with BM resection after failure of IO were identified (IO cohort). Tumor-infiltrating lymphocytes (TILs; CD3, CD8, FOXP3) as well as immune checkpoint molecules (PD-L1) were investigated on immunohistochemical stainings. A control group of BM patients without prior IO was included for comparison (no immunotherapy cohort, NIO).

Results

Twenty-eight IO patients (12 females, 16 males; median age 61 years) and 76 NIO patients (41 females; 35 males; median age 58 years) were included in the analyses.

Table 1 - Patient characteristics of IO cohort

Table 2 - Patient characteristics of NIO cohort

IO cohort		N=28	100%	NIO cohort		N=76	100%
Sex	female	12	42.9	Sex	female	41	53.9
	male	16	57.1		male	35	46.1
Age at BM diagnosis, years	median (range)	61 (27-78)		Age at BM diagnosis, years	median (range)	58 (37-80)	
Cancer entity	Lung	14	50.0	Cancer entity	Lung	45	59.2
	Melanoma	5	17.9		Melanoma	5	6.6
	Breast	1	3.6		Breast	11	14.5
	Renal	4	14.3		Renal	4	5.3
	Other	4	14.3		Other	11	14.5
KPS at BM diagnosis	median (range)	80 (50-90)		KPS at BM diagnosis	median (range)	90 (40-100)	
OS from BM, months	median (range)	7 (0-51)		OS from BM, months	median (range)	11.5 (0-128)	

Abbreviations: IO immunotherapy, NIO no immunotherapy, BM brain metastases, KPS Karnofsky Performance Status, OS overall survival

Table 3 - IO characteristics of IO cohort

IO characteristics		N=28	%	IO characteristics		N=28	%
Systemic therapy	median (range)	1 (0-4)		Target of IO	CTLA4 only	2	7.1
lines prior to IO		1 (0-4)			CTLA4+PD-1	4	14.3
IO last therapy before	yes	22	78.6		PD-1	14	50
BM diagnosis					PD-L1	8	28.6
	no	6	21.4	IO+chemotherapy	yes	2	10.7
Number of IO applications	median (range)	7 (1-56)		combination		3	10.7
		/ (1-30)			no	25	89.3
	n/a	1	3.6				

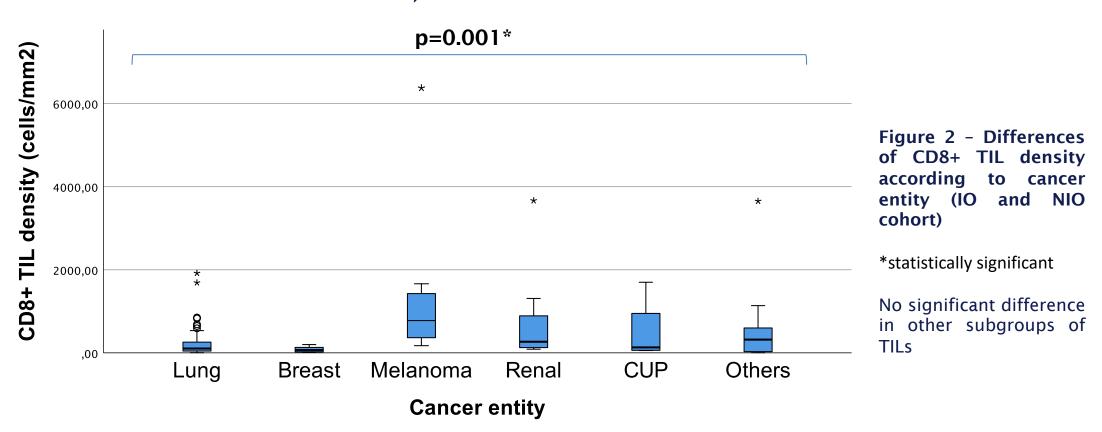
Abbreviations: IO immunotherapy, BM brain metastases, CTLA4 cytotoxic T-lymphocyte-associated protein 4, PD-1 programmed cell death protein 1, PD-L1 programmed cell death 1 ligand 1

Sixteen/28 (57.1%) IO patients showed tumor PD-L1 expression (TPS range 0-100) in BM. FOXP3+ TIL density was statistically significantly higher in IO compared to NIO patients (Mann-Whitney U test; p=0.001, 77.50 cells/mm2 vs. 27.68 cells/mm2). Median CD8+ TIL density was numerically higher in IO compared to NIO (p=0.066) whereas median CD3+ TIL density was lower in IO vs. NIO (p=0.075) patients, respectively.

Table 4 - Inflammatory characteristics in IO cohort

CD3

Table 5 - Inflammatory characteristics in NIO cohort


p=0.001*

IO cohort inflammatory characteristics	median	range	NIO cohort inflammatory characteristics	median	range
CD3+ TIL density	227.17	0.34-2093.71	CD3+ TIL density	467.30	17.92-3087.15
CD8+ TIL density	325.05	10.45-6372.33	CD8+ TIL density	135.72	5.06-1917.34
FOXP3+ TIL density	77.50	5.61-1049.46	FOXP3+ TIL density	27.68	0-323.36
Tumor PD-L1 expression (>1%)	N=28	%	Abbreviations: IO immunothera differentiation, TIL tumor-infiltra L1 programmed cell death 1 liga	ting lymphocytes, F	
positive	16	57.1			
negative	12	42.9	I	FOXP3	
			(2 1200,00 L		

Figure 1 - Differences in TIL densities (cells/mm2) between IO and NIO

p=0.066

Median CD8+TIL density was statistically significantly highest in BM from melanoma patients (Kruskal Wallis test, p=0.001). There was no correlation of time from last IO application to BM resection with TIL density (Spearman correlation coefficient $<\pm0.3$).

Conclusion

A higher infiltration with regulatory immunosuppressive FOXP3+ T cells could be an immunological escape mechanism in BM from solid cancers. New immunological targets are warranted to increase the likelihood of response to IO in BM patients.

References, Disclosure Statement & Contact

- 1. EJ G, AW G-N, L W, SJL B, HGM N, AAE de J, et al. Torquetenovirus Serum Load and Long-Term Outcomes in Renal Transplant Recipients. J Clin Med; 2020
- 2. 2. K D, M S, R S, F H, F D, I G, et al. Torque teno virus for risk stratification of graft rejection and infection in kidney transplant recipients-A prospective observational trial. Am J Transplant; 2020

Angelika M. Starzer has received lecture honoraria from Astra-Zeneca and travel support from PharmaMar. Study sponsored by Department of Medicine I, Medical University of Vienna, Austria. The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged.

Please contact anna.berghoff@meduniwien.ac.at for any questions