#1193P

Baseline mutational profiles of patients with CUP enrolled onto CUPISCO

C. Benedikt Westphalen,¹ Armen R. Karapetyan,² Andreas Beringer,² Tilmann Bochtler,³ Nasséra Chalabi,² Natalie Cook,⁴ Gonzalo Durán-Pacheco,² Sophie Golding,² Elen Höglander,² Ferran Losa,⁵ Linda Mileshkin,⁶ Holger Moch,⁷ Chantal Pauli,⁷ Jeffrey S. Ross,^{8,9} Ethan S. Sokol.⁸ Richard W. Tothill.¹⁰ Alwin Krämer³

¹Comprehensive Cancer Center Munich & Department of Medicine III, Ludwig Maximilian University of Munich, Munich, Germany; ²F. Hoffmann-La Roche Ltd, Basel, Switzerland; ³German Cancer Research Center (DKFZ) and University of Heidelberg, Heidelberg, Germany; ⁴The University of Manchester and the Christie NHS Foundation Trust. Manchester. United Kingdom: ⁵Hospital de Sant Joan Despi Moisès Broggi, ICO-Hospitalet, Barcelona, Spain; 6Peter MacCallum Cancer Centre Melbourne, VIC, Australia; ⁷University of Zürich and University Hospital Zürich, Zürich, Switzerland; 8Foundation Medicine, Inc., Cambridge, MA, USA; ⁹SUNY Upstate Medical University, Syracuse, NY, USA; ¹⁰University of Melbourne, Melbourne, VIC, Australia,

Summary

Results from this analysis demonstrate the ability to cluster CUP cases based on molecular profiling. Results also suggest that CGP can identify actionable GAs in a significant proportion of patients with poor-prognosis CUP, potentially offering more personalised treatments that may improve outcomes for these patients.

ePoste Supplement

Copies of this ePoster obtained through quick response and/or text key codes are for personal use only and may not be reproduced without nission of the authors

Please contact the lead author at christoph_benedikt.westphalen@med.unimuenchen.de for permission to reprint and/or distribute. Presented at the European Society for Medical Oncology (ESMO) 2021 Virtual Congress, 16-21 September.

Introduction

Results

unmet medical need for better therapeutic options.³⁻⁶

- Methods CUP describes a heterogeneous group of metastatic cancers without an identifiable primary tumour, despite thorough clinical work-up.¹
 - Upon enrolment in CUPISCO, CGP, including determination of MSI and TMB, was performed on formalin-fixed, paraffin-embedded tissue using the FoundationOne®CDx assav (Foundation Medicine, Inc., Cambridge, MA, USA).
 - GAs in ≥3% of patients were analysed using multiple correspondence analyses and hierarchical clustering to identify co-occurrences.

• Median age was 62 years (range: 22-84; N = 346 [cut-off: April 2021]) and median TMB was 2.5 mutations/Mb (0-63.0; Supplementary Table 1). The frequency of MSI- and TMB-high (≥16 mutations/Mb) samples was 3% and 9%, respectively (Supplementary Table 1).

personalised and effective therapeutic options for patients with poor-prognosis CUP.

• The most frequent GAs were TP53 (44%), CDKN2A (32%), KRAS (21%; G12C: 2%), CDKN2B (21%), ARID1A (13%), STK11 (13%), MTAP (12%), PIK3CA (10%), MYC (8%), PBRM1 (8%), FGFR2 (8%) and BAP1 (8%; Figure 1).

preliminary, descriptive molecular analysis of ~50% of patients designated for enrolment in CUPISCO.

• In our analysis, at least 30% of patients carried a potentially targetable GA (Supplementary Figure 1). • Beyond PIK3CA and FGFR2, some of the other targetable GAs included BRAF (6%; V600E: 3%), ERBB2 (6%), EGFR (2%), MET (2%), ROS1 (1%), NTRK1 (1%) and ALK (0.3%).

Although the incidence of CUP has decreased over the last few decades.²⁻⁴ this has not correlated with improved survival, highlighting the

· CGP is a next-generation sequencing approach that detects novel and known variants of all the main classes of genomic alterations in

cancer-related genes, as well as the genomic signatures MSI, TMB and genome-wide loss of heterozygosity.⁷ CGP may reveal more

· CUPISCO (NCT03498521) is an ongoing, phase II randomised study of targeted therapy/cancer immunotherapy vs platinum-based

chemotherapy in patients with unfavourable CUP, defined per the European Society for Medical Oncology guidelines.⁸ We present a

· Based on hierarchical clustering of co-mutational profiles, multiple clusters were identified and characterised by specific GA co-occurrences (clusters 1. 2. 5 and 6) or GA frequencies (clusters 3 and 4; Figure 2 and Supplementary Figure 2). Most GA co-occurrences were also found after analysing a similar population with the same methodology

Figure 2. Patient clusters based on mutational profiles

Conclusions

(FoundationCore dataset).9

- The overall distribution and co-occurrence of GAs from patients enrolled in CUPISCO, including in targetable genes, was comparable with data from a similar, independent CUP population.⁹
- This descriptive analysis sheds further light on the molecular landscape in patients with poor-prognosis CUP.
- Our analyses demonstrate that CUP cases can be clustered based on molecular profiling; further analyses and studies are needed to determine if these clusters carry clinical relevance.
- Our early results suggest that CGP of CUP samples identifies therapeutically relevant GAs in a significant proportion of patients and could thus guide personalised treatment of these tumours.

Acknowledgements

was provided by

assistance for this ePoster,

BSc, of Health Interactions,

F. Hoffmann-La Roche Ltd.

furnished by Stephen Salem.

Abbreviations Ampl. amplification; CGP, comprehensive genomic profiling: CN(A), copy number alteration: CUP, carcinoma-of-unknown-primary-origin; Del. deletion: GA. gene alteration: Mb. megabase: MSI, microsatellite instability: RA, rearrangement: SV, short variant; TMB, tumour mutational burden.

References

1. Stella GM, et al. J Transl Med 2012;10:12; 2. Rassy E, et al. Cancer Epidemiol 2019;61:139-141; 3. Binder C, et al. Cancer Med 2018;7:4814-4824; 4. Urban D. et al. Br J Cancer 2013:109:1318-1324: 5. Fizazi K. et al. Ann Oncol 2015;26:133-138; 6. Hemminki K, et al. Ann Oncol 2011;23:1854-1863; 7. Singh AP, et al. Cancers 2020;12:1156; 8. Krämer A, et al. Ann Oncol 2018;29:Abstract 445TiP; 9. Ross JS, et al. Oncologist 2021;26:e394-e402.

Conflicts of interest Support for third-party writing

CBW reports honoraria from Bayer, Celgene, Ipsen, Servier, Taiho and F. Hoffmann-La Roche Ltd, has participated in an advisory board for Celgene, Shire/Baxalta, Rafael Pharmaceuticals, RedHill BioPharma and F. Hoffmann-La Roche Ltd, has received travel/accommodation expenses from Baver, Celgene, RedHill BioPharma, F. Hoffmann-La Roche Ltd, Servier and Taiho, and has received research support (medical writing support) from F. Hoffmann-La Roche Ltd. Please refer to the Supplementary for all author conflicts of interest. This analysis was sponsored by F. Hoffmann-La Roche Ltd. CUPISCO (NCT03498521) is sponsored by F. Hoffmann-La Roche Ltd.