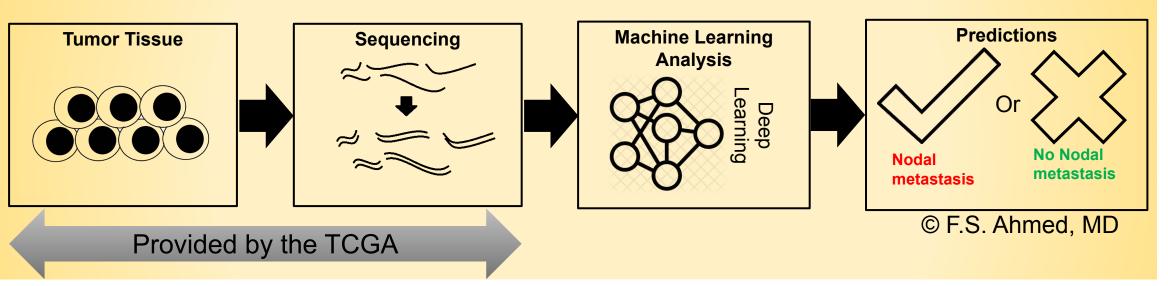


Artificial Intelligence based nodal metastasis prediction


Authors: Fahad Shabbir Ahmed, MD¹; Furqan Bin Irfan MD, PhD² ¹Wayne State University, Detroit Michigan, USA; ² College of Osteopathic Medicine, Michigan State University, Lansing, Michigan Abstract: 1986

Background:

A total of 5507 RNASeq samples from 2869 patient data were Nodal metastatic spread of cancer is a sign of late progression of The targeted gene *deep learning (199* analyzed in the TCGA database. Patient data was used after alignment the disease process. The use of artificial intelligence in clinical for the development of a machine learning model. The model was a sciences has shown great promise in accurately predicting genes) model shows better performance constructed and trained multi-layer deep-learning network. The difficult-to-predict clinical outcomes. In our current study, we complete gene expression profile produced a sensitivity of 59.3%, hypothesize that RNA transcription data can be used as a biomarker than the complete gene expression model. specificity of 64.9%, PPV of 63.9%, NPV of 60.3%, and an AUROC of to predict nodal metastasis in a number of different cancers. 0.97(95%CI 0.03-0.05). While the selected gene expression panel Deep learning can predict nodal Machine learning has been used in other clinical settings to predict showed a sensitivity of 92.6%, specificity of 92.7%, PPV of 92.5% and clinical outcomes^{1, 2}. NPV of 92.8%, and AUROC of 0.98 (95%CI 0.05-0.09). metastasis with good accuracy.

Methods:

The Cancer Genome Atlas (TCGA) database was utilized to identify differentially expressed genes (DEGs) and corresponding clinicopathological Future Directions for Research: characteristics for all types of cancers. Replicate cases were generated for these experiments. In two experiments we used: 1) complete gene expression \bigcirc data and 2) 199 selected genes involved in multiple cancer pathways to predict nodal metastasis All data were downloaded from the TCGA, compiled, coupled using key columns, next we developed a deep-learning O algorithm that would predict nodal metastasis. For the data we applied a split of 80/20 for training and test sets, we used SMOTE to fix the uneven distribution of the outcome in the dataset. The accuracy of the models was • Exploration of the tumor microenvironment assessed by measuring sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver-operator curve (AUROC).

igure 1. Machine learning analysis

- Further validation of these finding on an independent external dataset.
- Evaluation of Quartile cutoff for low vs high expression in training the future algorithms.
- regarding the immune-landscape in the pan-cancer model between nodal and non-nodal metastasis tumors.
- Exploration of new algorithm for individual cancers types and evaluation of there immune-landscape and tumor microenvironment.

Results:

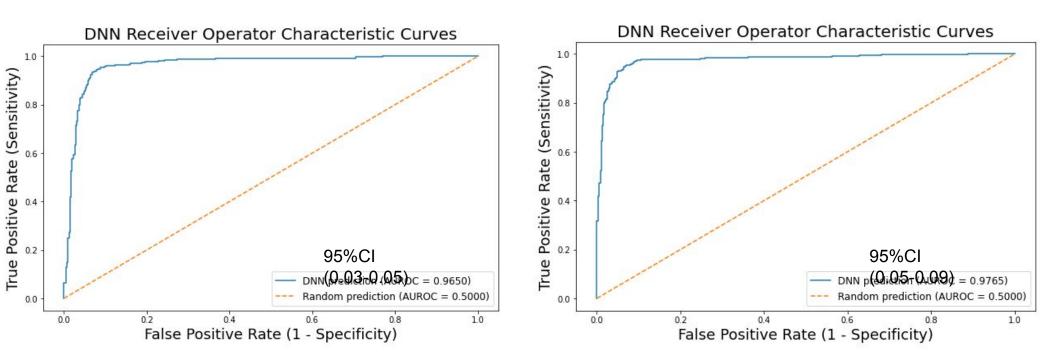


Figure 2. Area Under the Receiver Operating curves for the machine learning analysis

xperiments	Test-set accuracy	Training-set accuracy	Sensitivity	Specificity	Positive Predictive Values	Negative Predictive Values	False positive rate
Pan-Cancer, Pan-transcriptomic	93.02	98.70	59.26	64.94	63.90	60.34	35.07
Pan-Cancer 99 genes ranscriptomics	92.67	96.24	92.63	92.70	92.49	92.84	7.30

Table 1. Machine learning analysis

References:

- Ahmed, F.S., Ali, L., Raza-Ul-Mustafa et al. A hybrid machine learning framework to predict mortality in paralytic ileus patients health records (EHRs). J Ambient Intell Human Comput 12, 3283–3293 (2021). https://doi.org/10.1007/s12652-020-02456-3
- Ahmed, F.S., Ali, L., Joseph, B.A., MD, Ikram, A., Ul Mustafa, R., Bukhari, S.A.C. A statistically rigorous deep neural network approach to predict mortality in trauma patients admitted to the intensive care unit, Journal of Trauma and Acute Care Surgery: October 2020 - Volume 89 - Issue 4 - p 736-742 doi: 10.1097/TA.00000000002888