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BACKGROUND Background
Primary liver cancer (PLC) is a leading cause of cancer mortality worldwide, with a total of over 840,000 new
cases identified and 780,000 related deaths annually. Early detection of PLC, including hepatocellular
carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), combined HCC-ICC (cHCC-ICC), is essential for
patients’ survival. Up-to-date, a fast, cost-effective, and accurate model is still needed for PLC early
detection. This study aims to develop an accurate and cost-effective method for PLC early detection and
differentiating ICC from HCC using plasma cell-free DNA (cfDNA) fragmentomic profiles.

CONCLUSIONS 
We herein reported a predictive model using the comprehensive fragmentomic profiling of plasma cfDNA
for PLC early detection.
Our method, which is faster and more cost-effective by replying on only low coverage WGS data, has out-
performed previously reported models.
Our method has exhibited more significant potential in clinical practice for early detection of PLC and its
different subtypes
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METHODSWhole-genome sequencings (WGS) were performed using plasma cfDNA samples from 192 PLC patients
(159 HCC, 26 ICC, 7 cHCC-ICC) and 170 non-cancer controls (including 53 liver cirrhosis[LC] or hepatitis B
virus[HBV]-positive) recruited in the training cohort. An ensembled stacked model for PLC detection was
constructed using cfDNA Fragment Size Ratio (FSR) and Fragment Size Distribution (FSD) on the training
cohort. The model performance was assessed in an independent test cohort (189 PLC patients [157 HCC, 26
ICC, 6 cHCC-ICC], 164 non-cancer controls [including 51 LC/HBV]).

Our model showed excellent performance for cancer detection in the test cohort (Area Under the
Curve [AUC]:0.995, 96.8% sensitivity at 98.8% specificity) (Table 1, Figure 2)

Our model maintained consistent performances during downsampling process, even using 1X coverage
data (AUC: 0.994, 93.7% sensitivity at 98.8% specificity) (Figure 2)

Results

Figure 2. Evaluation of ensembled stacked model detecting early PLC. A) ROC curves evaluating the overall performance of the 
predictive model, which was constructed using unified 4x coverage WGS data, in distinguishing PLC patients from non-cancer 
controls (LC/HBV, healthy) in the test dataset. B) Boxplots illustrating cancer score distribution in the healthy, disease and cancer 
groups in the test dataset based on the 4x coverage model. The 98.8% specificity cutoff for cancer score was 0.41 as shown by
the dotted line.  C) ROC curves for distinguishing PLC from non-cancer controls of a limit of detection analysis, the 4X coverage 
model was evaluated using WGS data downsampled to 3X, 2X, 1X and 0.5X.  D) Dot plot of 4X coverage model sensitivity in 
detecting PLC using 4X, 3X, 2X, 1X and 0.5X WGS data, at 98.8% (red) and 95.2% (green) specificities for non-cancer controls. The 
error bars represented 95% confidence interval. 

Figure 1. Schematic representation of study and datasets design.  

Method

Conclusion

A separate model showed great potential in distinguishing ICC from HCC (AUC: 0.776) (Figure 3)

Cancer vs Non-Cancer
Actual

Cancer Non-Cancer

Predict
Cancer 183 2

Non-Cancer 6 163
Sensitivity (95% CI) 96.8% (93.2-98.8%)
Specificity(95% CI) 98.8% (95.7-99.9%)

PPV (95% CI) 98.9% (96.1-99.9%)
NPV (95% CI) 96.4% (92.4-98.7%)

Accuracy (95% CI) 97.7% (95.6-99%)

Cancer vs Healthy
Actual

Cancer Healthy

Predict
Cancer 183 0
Healthy 6 114

Sensitivity (95% CI) 96.8% (93.2-98.8%)
Specificity(95% CI) 100% (96.8-100%)

PPV (95% CI) 100% (98-100%)
NPV (95% CI) 95% (89.4-98.1%)

Accuracy (95% CI) 98% (95.7-99.3%)

Cancer vs Disease
Actual

Cancer Disease

Predict
Cancer 183 2
Disease 6 49

Sensitivity (95% CI) 96.8% (93.2-98.8%)
Specificity(95% CI) 96.1% (86.5-99.5%)

PPV (95% CI) 98.9% (96.1-99.9%)
NPV (95% CI) 89.1% (77.8-95.9%)

Accuracy (95% CI) 96.7% (93.5-98.6%)

Table 1. Evaluating model performances using the test dataset.

Figure 3. ROC curve of model distinguishing HCC from ICC. 
Ensembled stacked model for distinguishing HCC and ICC was 
trained using 159 HCC and 26 ICC from the training cohort 
and was evaluated using the 157 HCC and 26 ICC from the 
test cohort. The same FSR and FSD profiles and ensembled 
stacked machine learning approach was used for constructing 
the model
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