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While significant progress has been made in developing new 
therapies for cancer patients, many patients lack treatments 
that result in good outcomes. Existing patient-therapy matching 
algorithms frequently rely on mutations and well-studied targets 
for which only a limited number of FDA-approved therapies 
exist. In contrast, SHEPHERD’s approach, called DELVE, uses 
computational and mathematical tools informed by transcriptomic 
data to match therapies with the models, cancers, and specific 
patients that will be most impacted by drug treatment, regardless 
of mutational status.

The DELVE platform, which is comprised of dozens of separate tools, was 
constructed to inform intelligent drug design, development, and clinical use by 
identifying the simultaneous mechanisms of action for any specific drug, and 
matching those mechanisms with -omic-level patient data. DELVE operates in 
contrast to the “target-based” development methodology which excludes the 
therapeutic utility of off-target effects. 

For drug developers, DELVE is able to match specific molecules with predicted 
clinical utility in 161 cancers, and to identify potential utility in comparison with 

standard of care. For point-of-care use, DELVE incorporates transcriptomic 
data and can match patient-level data with 396 drugs agnostic of the patient’s 
mutational status. DELVE differs from transcriptomic direction reversal 
techniques in that, while it can incorporate direction reversal, it also can 
identify the potential for a drug to leverage dysregulations, such as gene 
overexpression, to boost efficacy. 

For each therapy under study, DELVE requires canonical SMILES representing 
molecular structure and 100 or fewer post treatment IC50 values that measure 
the sensitivity of cell lines to the therapy under study and which include 
multiple cell lines that a) clearly respond to therapy and b) are resistant to 
therapy.

Poster Overview
A major component of DELVE is a broad repository of cancer -omic data, which 
has been aggregated over three years from public sources [Table 1]. Table 2 
contains an overview of some of the dozens of tools that compose the DELVE 
platform. One of them, GCVA, is highlighted in figure 1. Figure 2 describes how 
GCVA-output genes interact at the protein level for a specific therapy. Figure 3 
maps the computational pipeline which knits together DELVE tools to generate 
reports. Figure 4 contains example outputs from GCVA on generic drugs with 
high and low probability for therapeutic utility in additional patients. Figure 
5 describes the overall accuracy achieved using DELVE tools in predicting 
outcomes on pre-clinical models as well as on retrospective clinical trial data. 

I. To identify optimal therapies for specific cancers and subtypes of cancer which may not have previously been clinically explored

II. To identify optimal therapies for specific patients based on their -omic information

III. To match new and existing therapies with the specific patient populations that are most likely to benefit from drug treatment

DELVE leverages bioinformatics, chemoinformatics, 
proprietary algorithms, deep learning neural networks, 
random tree forests, and other tools to generate 
transcriptomic-level drug response-resistance 
signatures. DELVE integrates over 75,000 patient 
samples representing 161 cancers as well as healthy 
tissues, and was deployed to predict drug response and 
resistance across thousands of in vivo, ex vivo, and in 
vitro cancer models. 

Cancer Naming 
A significant challenge in pan-cancer analysis is heterogeneity in naming convention as well 
as misclassifications of cancer models. DELVE’s tools operate on cancer patient omic data 
and cancer model data repositories which have been curated, cleaned, and when necessary 
renamed to conform with a consolidated data dictionary. Cancer naming conventions have 
been derived from prior work documented by Arline, et al.1,2

Patient Database 
Microarray data have been processed using the crossmeta package and hand curation, 
RNAseq data has been normalized as log(TPM+10n) transformed transcripts per million and 
hand curated. Doppelgänger is used to remove duplicate patient samples by looking for 
suspicious similarities in expression between all samples.

Classification 
Subclassifications of cancers and classifications of specific patient samples as noted in 
figure 3a are accomplished with several tools. Random forest classification models are used 
to classify patient samples based both on mutational and transcriptomic characteristics. 
Unsupervised non-negative matrix factorization and pathway analysis models are used to 
generate subclassifications of cancers where they do not exist in literature.

GCVA 
GCVA is a proprietary algorithm which intakes cell lines transcriptome data and associated 
IC50s measuring sensitivity to drug treatment. GCVA utilizes the direct comparison between the 
highest and lowest responding samples in this training set. This approach ensures the detection 
of transcriptomic variation that is most directly responsible for the differences in drug response 
across the panel of sensitivity data at hand. In general, the more sensitivity data are available, 
the more reliable the predictions. 

For instances where data are inadequate due to data set size, sampling bias, noise, or 
imbalance, a separate variation of GCVA exists. This variation institutes sampling adjustments 
to avoid Bayesian imbalance and reshuffles sensitivity order within extreme samples. Such 

algorithm adjustments allow DELVE to process data for under-researched therapeutics and to 
deliver highly predictive sensitivity projections, as quantified by the measures in the results 
section and in figure 5.

Machine Learning 
Machine learning, and deep learning in particular, are used in a variety of DELVE tools 
due to their versatility and variety of computational methods. DELVE’s Blood Brain Barrier 
Deep Learning Network, Deep Learning IC50 Network, Deep Learning Synergy Networks 
and Chemical Analytics all utilize a variety of network or classifier based machine learning 
algorithms. The most important feature made possible through machine learning is ability to 
make predictions just from the known chemical structure alone in the absence of sensitivity 
data. ML methods utilized in DELVE include convolutional neural networks (CNN), feedforward 
neural networks, random tree classifiers, support vector classifiers, non-negative matrix 
factorization, natural language transformers, and chemoinformatic featurizers.

Citations  
1 Arline, K., Rare Isn’t Rare; (Abstract #7739). Presented at The American Association of 
Cancer Researchers Annual Proceedings, April 2018, Chicago, Illinois.

2 Treuting, R.L., Rare Cancer’s ‘Valley of Death’; (Abstract #2505). Presented at The American 
Association of Cancer Researchers Annual Proceedings, March 2019, Atlanta, Georgia. 
 

TABLE 1: DATA SOURCES

TABLE 1A: PATIENT DATABASE

FIGURE 2: PROTEIN LEVEL CONNECTIONS

SHEPHERD’s patient database has been 
collected from 1,215 public sources. These 
data consist of RNAseq and microarray data on 
healthy and tumor tissue. Data were cleaned, 
processed, and analyzed for quality.

• DELVE can predict therapeutic efficacy across 161 cancers, including estimates of comparative 
efficacy to standard of care.

• DELVE can identify high responding pre-clinical models from a repository of 4,867 models 
representing 165 cancers.

• DELVE can predict the comparative efficacy of 396 compounds on specific patient samples.

• Single patient reports are generated in approximately 8 minutes. 

• DELVE can operate on small molecules and in vitro-assessable biologics.

I. DELVE is able to predict drug efficacy on cancer models and to correctly select indications for existing 
therapies, supporting its utility in predicting new indications for cancer therapies. Because the platform 
can operate on any single transcriptome, it is possible to use this tool to match patients with therapies 
from which they may benefit without reliance on a previously classified target.

II. DELVE has the ability to predict new indications for in-development and existing oncology therapies 
across 161 cancer types. DELVE is also able to offer more precise patient population selection guidance, 
which can increase the overall clinical trial response rate.
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FIGURE 3: HIGH THROUGHPUT IN SILICO PIPELINES

TABLE 1B: MODEL REPOSITORY

FIGURE 5: ACCURACY

FIGURE 3A: PATIENT-FOCUSED WORKFLOW FIGURE 3B: THERAPEUTIC-FOCUSED WORKFLOW

Count

Cancer Samples 77,615

Represented Cancers 161

Healthy Tissue Samples 13,284

Tool Application

Subclassification Algorithms
Expression and mutation based methods for finding subgroups in pa-
tient data and identifying potential new targets in understudied cancers

Deep Learning Synergy Networks
Prediction of enhanced drug efficacy in combination with standard-of-care 
or other oncology assets, both across indications and for specific cell lines

Deep Learning IC50 Network
Ability to predict drug efficacy across 1,300 cell lines based on molecular 
structure, or structure and seed data

GCVA
Proprietary drug response-resistance algorithm predicts efficacy across 
cell lines, ex vivo and in vivo models, aggregate patient datasets, and on 
individual patient data

GCVA - Toxicity GCVA deployed on healthy tissue samples to predict toxicity on organs

RNA sequencing Pipeline
Internally developed sequencing pipeline including quality control, align-
ment, fusion detection, somatic variant calling, and multiple differential 
gene expression, pathway, and gene-set analysis techniques.

Model Repository
-Omic data on in vitro, ex vivo, and in vivo models, cleaned and classi-
fied according to SHEPHERD cancer classifications

BBB Deep Learning Network
Prediction of the ability of an asset to cross the blood-brain barrier, 
built on hand-curated chemical interactions

Chemical Analytics Ability to predict lipophilicity and hydrophilicity

Homogeneity Analysis
Ability to predict homogeneity of cancers based on patient samples, and 
to compare cancers with each other

High Throughput In Silico Pipeline
Ability to automatically assess the utility of hundreds of drugs on tens of 
thousands of patient and model data points

Model Count Omic Data Count Cancers Represented

In Vitro 1,898 1,408 165

Ex Vivo / PDX 2,029 1,950 149

In Vivo 940 279 158

Cancer models, including in vitro, ex vivo, PDX, and in vivo, have been curated by hand to share 
naming conventions across all data sources. Cancer naming is determined via SHEPHERD’s 
research identifying specific forms of cancer.1,2 -Omic data on these models has been aggregated 
when available or generated internally by SHEPHERD.

The availability of this information allows DELVE to identify models that best represent specific 
cancers, and to identify those models most likely to be highly affected by a specific drug 
treatment from in vitro research tools through to in vivo.

DELVE was able to correctly classify the highest and lowest responding drug-cell line pairs with 96% sensitivity [95% CI +/- 0.95%] and 88% 
specificity [95% CI +/- 1.0%]. Across published in vivo studies related to 20 FDA-approved cancer therapies, drug-model pairs which achieved 
a high DELVE score showed greater than or equal to 90% tumor growth inhibition in vivo 78% of the time. Drug-model pairs with low DELVE 
scores showed less than or equal to 60% tumor growth inhibition in vivo 77% of the time. Across 71 FDA-approved drugs, using chemical 
structure alone, the platform was able to predict at least one approved solid tumor indication 84% of the time. Random chance indication-
therapy pairing was correct only 21% of the time. Across 10 failed therapies, the platform was able to predict failure with 82% accuracy.

RESULTS

FIGURE 1: GCVA
TABLE 1A: ALGORITHM TABLE 1B: GCVA LIKELIHOOD RATIO

FIGURE 4: EXAMPLE THERAPEUTIC REPOSITIONING ANALYSIS

FIGURE 4B: LOW PROBABILITY FOR REPOSITIONING – PEMETREXED

DATA HIGHLIGHTS

TABLE 2: DELVE TOOLS

While GCVA is powered by transcriptomic data, proteins 
associated with GCVA-derived genes for a specific therapy 
frequently have documented interconnections with genes 
and proteins known by other methods to interact with the 
molecule’s canonical and non-canonical targets. These 
targets and interactions are identified via literature review and 
bioinformatic analysis, including pre- and post-treatment cell 
line sequencing, as part of DELVE. The example in this figure is 
for the repurposed therapy mebendazole. The GCVA-predicted 
gene GLI2 has 23 protein-level interactions with proteins that 
have a known relationship with the repurposed therapeutic 
mebendazole. 

GCVA Predicted Genes Literature and Bioinformatic-Identified Interactions

MSX1
EP300, TP53, NEFM, SHH, PTCH1, GAS1, GLI1

GUCY1B3
KDR, MAPK1, MAPK3

GLI2
MYB, EP300, RB1, MAPK1, TP53, CDKN1A, CCNE1, CCNB1, CCNA1, 
ABL1, PSM9, KDR, TGFB1, MAPK3, TNF, CDH1, SHH, GLI1, PTCH1, 
SUFU, GAS1, SMO, HHIP

FOXG1 GLI1, MK167, CCNA1, CDKN1A, TP53, CDK7, SHH, MYB, EP300, 
MAPK3, MAPK1

FOXD4L6
CDK7, EP300

ETV4 ABL1, MAPK1, MAPK3, CCND1, MKI67, TP53, EP300, CCNB1, GLI1

EPS8L1 ABL1, CDH1, MAPK1, MAPK3

CDH1CDH1

TNFTNF

TP53TP53

TGFB1TGFB1

KDRKDR

RB1RB1

CCNE1CCNE1

MAPK1MAPK1

ABL1ABL1

CCNB1CCNB1

GLI1GLI1

MYBMYB

HHIPHHIP

SUFUSUFU

CDKN1ACDKN1A

GLI2GLI2

SHHSHH

GAS1GAS1

PTCH1PTCH1

SMOSMO

MAPK3MAPK3

EP300EP300

CCNA1CCNA1

Szklarczyk et al. Nucleic acids 
research 47.D1 (2018): D607-D613.2

For patient-specific analysis, DELVE is executed simultaneously on 396 therapies which include 
oncology-specific targeted therapies, chemotherapies, chemotherapy-related agents, current and 
discontinued therapies in development, and repurposed drugs with known activity in cancer. The 
average time for report generation is 8 minutes leveraging Amazon AWS infrastructure.

GCVA is a mathematical algorithm and a core component of DELVE. Inputs for the analysis 
of a specific therapy are IC50 values post-treatment that measure the sensitivity of cell 
lines to drug treatment and the associated cell lines’ transcriptomes. GCVA function 
and design consists of 2 steps: 1) computing genes indicative of a drug response and 
2) processing samples with parameters obtained from the gene analysis. GCVA outputs 
gene “clusters” and associated statistical parameters that serve in aggregate as predictive 
biomarkers. These biomarkers, when applied to patient samples, provide an estimate of 
the predicted efficacy of the therapeutic on a model or sample. Compatible sources 
of transcriptomic data include, but are not limited to: cell lines, ex vivo and in vivo 
models, aggregate patient datasets, and individual patient data (with both 
microarray and RNAseq data utilizable). 

DELVE analysis of public data on existing cancer therapies as well as failed therapies 
reveals variable opportunities for benefiting additional patients and redeployment in 
additional cancers. Therapies which appear to have more potential for repositioning 
typically show efficacy in a broader range of pre-clinical models than therapies which are 
unlikely to succeed beyond a specific cancer, or which fail in cancer clinical trials overall.

These charts are derived from DELVE’s GCVA algorithm and in vitro screening data. 
They plot the difference between predicted response rates in a DELVE-selected patient 
population (green arc) versus the response rate that otherwise would be achieved in a 
clinical trial.

GCVA mathematically assesses the full 
transcriptome for all relevant interactions that 
lead to successful treatment with a specific therapy. This 
graphic suggests that a single molecule can have many 
interactions with interconnected biological mechanisms.

Each therapy differs in potential value add from GCVA. Using likelihood ratio analysis, graphs 
are generated which describe anticipated improvement in outcomes compared to baseline as a 
function of percentage of responders in a random sample, denoted by the green curve. These 
data are derived from characteristics of the drug as revealed by GCVA analysis of cell line IC50 
data. The area between the green curve and the red line quantifies GCVA’s ability to improve on 
population response rates for populations selected without DELVE at any proportion of “true” 
population responder share. 

In this example, a therapy which would have 
achieved a 20% response rate in a default 
population would expect to achieve an 80% 
response rate in a GCVA-specified population.
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In any clinical trial population, using GCVA would not add 
significantly to the patient population for pemetrexed. 

Population Responder Share %

FIGURE 4A: HIGH PROBABILITY FOR REPOSITIONING – TEMSIROLIMUS

Temsirolimus is currently approved in two cancers and 
under investigation in 10 more. It has a high probability 
for efficacy in additional cancers and patients, as 
demonstrated by the significant area between the 
GCVA predictions and the default population.
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Fifty-six separate processes are executed for a therapeutic focused workflow, resulting in a list of 
cancers on which the therapy is predicted to be effective and associated statistics. The average time 
for report generation is 22 minutes.
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The role of GCVA in the research process can 
be best described as a diagnostic test and is 
characterized accordingly. In a clinical trial setting, 
the goal of GCVA is to significantly improve patient 
selection as compared to a random patient selection. 
This approach can also be applied to a series of pre-
clinical experiments for the purposes of optimizing model 
selection and reducing development costs. 

Prediction Accuracy %

In Vitro Efficacy

Clinical Approvals

Clinical Failures 82%
n = 10 drugs

84%
n = 71 drugs

90%
n = 316 drugs

As outlined in results, DELVE accuracy has been characterized on preclinical tools and on 
retrospective clinical trial data. In vitro efficacy accuracy is DELVE’s ability to predict highest and 
lowest performing drug-cell line pairs within an appropriate IC50 range for each drug. Clinical 
approvals accuracy is DELVE’s ability to predict at least one successful drug approval for each 
therapy. Clinical failure accuracy is DELVE’s ability to identify that specific cancers under study would 
not successfully be treated by a specified drug.
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