196P-Targeting ESR1 in Breast Cancer Treatment: Repurposing of Statins

BACKGROUND

- Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases according to GLOBOCAN, 2020.
- Management of breast cancer has significantly changed in the last few years, witnessing the advent of more and more therapeutic approaches.
- With the increase in the incidence of breast cancer, precisely targeted therapies are urgently needed for treatment.
- Aberrantly high levels of Estrogen Receptor alpha are found in more than 70% of all breast cancers.
- Estrogen Receptor alpha (ESR1/ERα) (Figure 1) has proven to be a crucial therapeutic target for treating ER α positive breast cancer
- Most medications currently being used in breast cancer treatment are becoming resistant.
- Alternatives to the current treatment strategies are being explored
- Statins, traditionally indicated in cardiovascular diseases to reduce lipid levels, have been found to also exhibit anti-cancer activities.
- This systematic *in silico* study identified a number of potential statin drug candidates that may be used in breast cancer treatment

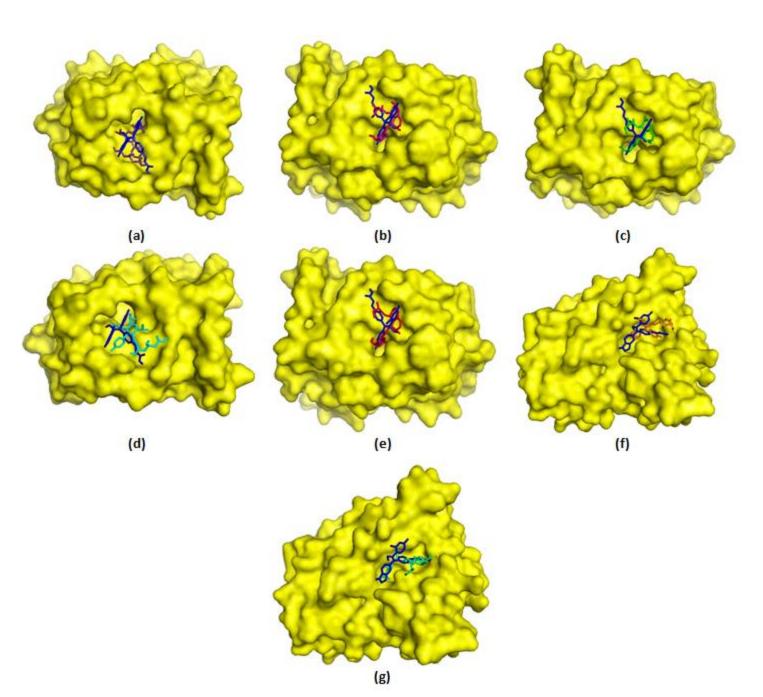
Figure 1. 3D structure of ESR1 visualized in PyMOL

METHODS

- Molecular docking of statins with ESR1 protein using AutoDock Vina.
- Superimposition with Brilanistrant (reference drug) using PyMOL.
- Interactions of reference inhibitor and candidate drugs with the protein (ESR1) using Discovery Studio Visualizer.
- Pharmacokinetic properties of the chosen drugs were evaluated using QikProp.

Table 1. List of Tools and Software

SI. No.	Software and tools	Version
1	Open Babel	2.4.1
2	PyMOL	2.0.4
3	AutoDock Vina	1.5.6
4	Discovery Studio Visualizer	17.2.0.16349
5	QikProp	2020-3


with ESR1

SI No	Drugs		Binding affinity (kcal/mol)
1	Brilanestrant Inhibitor)	(Reference	
2	Rosuvastatin		-8.6
3	Simvastatin		-8.1
4	Lovastatin		-7.9
5	Cerivastatin		-8.0
6	Mevastatin		-7.8
7	Pitavastatin		-8.3
8	Pravastatin		-8.0

Superimposition Results

Rosuvastatin, simvastatin, lovastatin, cerivastatin, mevastatin, pitavastatin and pravastatin were found to superimpose with the reference drug, brilanistrant (Figure 2).

Eva Rahman Kabir*; Nahid Nausheen and Nashrah Mustafa eva.kabir@bracu.ac.bd; nahid.nausheen@bracu.ac.bd; nashrah.mustafa@bracu.ac.bd Department of Pharmacy, Brac University, 66, Dhaka 1212

RESULTS

Molecular Docking Results are shown in Table 2.

Table 2. Binding Affinity Values of the Reference Inhibitor and Statins

Figure 2(a) Superimposition of Brilanistrant (Blue) and Rosuvastatin (Dark violet); (b) Superimposition of Brilanistrant (Blue) and Simvastatin (Magenta); (c) Superimposition of Brilanistrant (Blue) and Lovastatin (Green);(d)Superimposition of Brilanistrant (Blue) and Cerivastatin (Sky blue); (e) Superimposition of Brilanistrant (Blue) and Mevastatin (Red); (f) Superimposition of Brilanistrant (Blue) and Pitavastatin (Orange); (g) Superimposition of Brilanistrant (Blue) and Pravastatin (Cyan)

The interactions of the superimposed drugs with ESR1 was visualized in Discovery Studio. The results are given in Table 3.

Table 3.	Common	amino	acids	involved	in

SI No	Drugs	Amino acids
1	Brilanestrant	GLU323, TRP393, ILE326, ARG394,
	(Reference	LEU403
	Inhibitor)	
2	Rosuvastatin	TRP393, ARG394, LEU403
3	Simvastatin	ARG394, ILE326, LEU403,, TRP393
4	Lovastatin	ARG394, LEU403, ILE326
5	Cerivastatin	ARG394, TRP393
6	Mevastatin	ARG394, LEU403, ILE326
7	Pitavastatin	GLU323, ILE326, TRP393, ARG394
8	Pravastatin	ARG394, GLU323, TRP393

drug-ESR binding

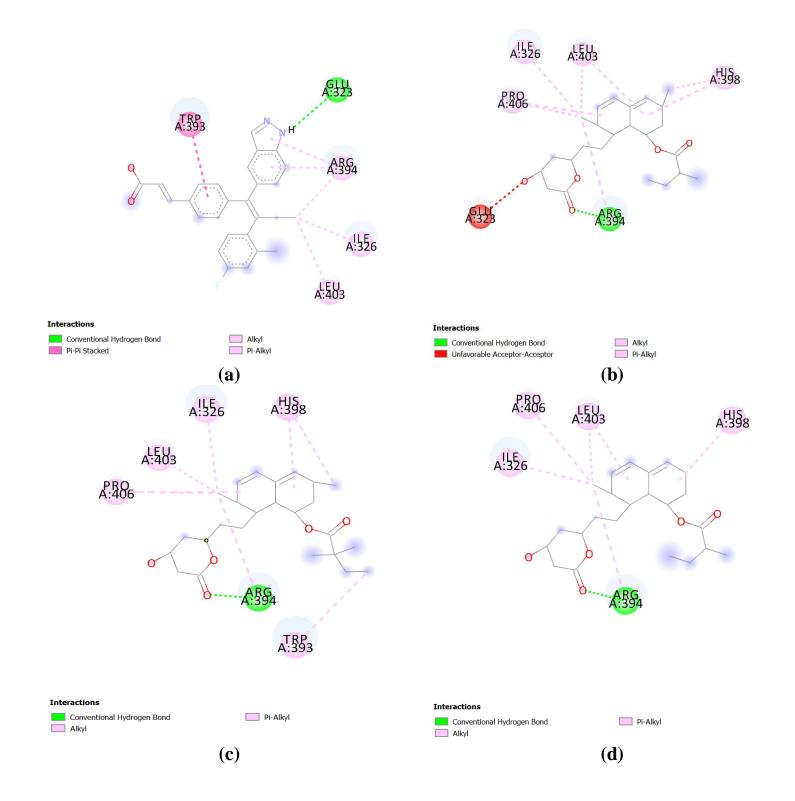


Figure 3. Interactions of (a) Brilanestrant (b) Lovastatin (c) Simvastatin and (d) Mevastatin with ESR1

Absorption, Distribution, Metabolism and Excretion (ADME)

- O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., Hutchison, G.R.: Open Babel: An open selected candidates were assessed using QikProp. chemical toolbox. J. Cheminform. 3, 33 (2011). https://doi.org/10.1186/1758-2946-3-33. Trott, O., Olson, brilanestrant was 79.35%. All the candidates showed good oral A.J.: AutoDock Vina: improving the speed and accuracy of absorption except rosuvastatin and pravastatin. docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-61 (2010). oral absorption (100%). https://doi.org/10.1002/jcc.21334.
- The pharmacokinetic properties of both the reference and • The predicted human oral absorption of the reference drugs, • Simvastatin, lovastatin and mevastatin showed excellent human
- Brilanistrant showed moderate intestinal and renal permeability (45.897 nm/second and 69.755 nm/second respectively).
- Among the selected candidates, simvastatin, lovastatin and mevastatin:
 - Showed excellent intestinal permeability (784.019) nm/second, 718.894 nm/second and 625.056 nm/second respectively).
- Showed moderate renal permeability.
- QPlogKhsa values of these three drugs were within range.
- Did not penetrate the CNS or the blood brain barrier as suggested by the CNS, logBB and PSA values.

CONCLUSION

The results of the study indicated that out of the eight candidate drugs taken, the three drugs - simvastatin, lovastatin and mevastatin - could be potential drugs in the treatment of breast cancer.

Further studies including *in vitro* and *in vivo* tests will be required to investigate and confirm their safety, efficacy and dosing profiles

REFERENCES

- Systèmes BIOVIA: Discovery Studio Visualizer. Dassault Technology. (2017).
- 2. DeLano, W.L., 2002. Pymol: An open-source molecular graphics tool. Newsl. Protein Crystallogr. 40, 1–8.
- 3. Di Bello, E., Zwergel, C., Mai, A., Valente, S., 2020. The Innovative Potential of Statins in Cancer: New Targets for New Therapies. Front. Chem. 516. https://doi.org/10.3389/FCHEM.2020.00516
- 4. Dustin, D., Gu, G., Fuqua, S.A., 2019. ESR1 mutations in breast cancer. Cancer. https://doi.org/10.1002/cncr.32345

6. Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Clin. caac.21660. Cancer https://doi.org/10.3322/caac.21660

DECLARATION STATEMENT

The authors declare there is no conflict of interest