

High-risk breast cancer patients with RAD51-low tumors are characterized by good prognosis

PD-L1

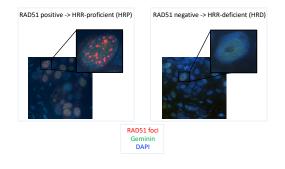
Figure 3. A) 4 out of the 5 TIL-high tumors in this cohort were

pĊR

RAD51

High-TIL of

no pCR


Figure 4. A) Disease-Free Survival (DFS) at 4 years was

100% for high-TIL tumors vs 65% for low-TIL tumors. B)

Patients with HRD tumors by RAD51 showed a trend

Background

Triple Negative Breast Cancer (TNBC) that do not achieve pathological complete response (pCR) are characterized by bad prognosis. The RAD51 test can identify Homologous Recombination Repair (HRR)-deficient tumors and may add prognostic value in this subset of patients, guiding postneoadjuvant treatments in order to improve survival.

Methods

RAD51 BRCA1 bv quantified and foci We immunofluorescence, content of tumor-infiltrating lymphocytes (TIL) and expression of immune markers on diagnostic tumor biopsies of 26 high-risk BC patients, admitted at the University Hospital of Parma between 01/2011 and 03/2020, and treated with neoadjuvant chemotherapy and surgery. High risk patients were defined as TNBC or early onset breast cancer (younger than 35 vears old) or gBRCA1/2-mutated breast cancer. Functional Homologous Recombination Repair Deficiency (HRD) was predefined as a RAD51 score ≤10% (RAD51-low). Germline mutations in HRR genes were tested in all patients, including BRCA1, BRCA2, CHEK2, PALB2, BRIP1, RAD54C, ATM. TP53 and NMN.

Results

RAD51 score

Figure 1. A) RAD51 was successfully scored in 26/29 (90%) RAD51-low, suggesting a crosstalk between HRD and an samples. 16/26 (62%) tumors were RAD51-low (HRD). Fourteen active antitumor immune response. B) High-TIL tumor patients presented HRR alterations: 4 gBRCA1, 2 gBRCA2 and 2 sample. C) Low-TIL tumor sample. gPALB2 mutations and 6 BRCA1-low foci, surrogate of lack of BRCA1 function likely due to promoter hypermethylation. Median RAD51 score was 3.4 in HRR-mutated tumors and 19.2 in HRR-WT tumors (p=.01). B) Patients with HRD tumors by RAD51 showed a trend towards better DFS (HR=0.28, 95% CI 0.05-1.54, p=.14).

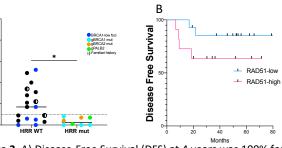


Figure 2. A) Disease-Free Survival (DFS) at 4 years was 100% for tumors that achieved pCR vs 67.5% for non-pCR tumors (p=.12). The addition of RAD51 status to pCR information improved the model capacity to predict DFS (ANOVA test, p=.05). B) In no-pCR subgroup, RAD51-low patients have a better DFS compared to RAD51-high.

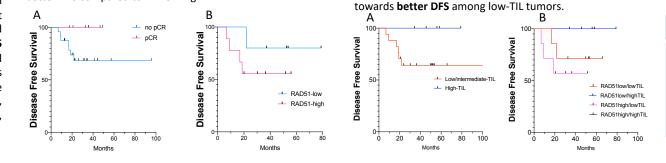
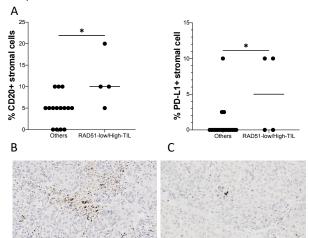



Figure 5. A) RAD51-low/TIL-high tumors had higher CD20+ TIL (p=.01), lower CD3+ TIL (p=.02), higher PD-L1 Combined Positive Score (p=.03), and a trend towards higher PD1+ TIL (p=.05); no statistically significant differences were found in FOXP3+ TIL. B) PD-L1-high tumor sample. C) PD-L1-low tumor sample.

Moreover, only 1 out of 4 RAD51-low/TIL-high tumors achieved pCR but none of them relapsed.

PD-L1

Conclusions

- The RAD51 test is able to identify HRR-altered tumors, beyond gBRCA1/2 mutations, and to select a cohort of RAD51-low patients with better prognosis in a platinum-free neoadjuvant chemotherapy setting.
- Biomarker analyses on treated paired tumors and on a larger cohort of patients are ongoing.

Affiliations: ¹University of Parma; ²Medical Oncology, University Hospital of Parma; ³Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology; ⁴Pathology, University Hospital of Parma; ⁵Oncology Data Science group, Vall d'Hebron Institute of Oncology; ⁶Genetics, University Hospital of Parma.