Abstract #285P **ESMO** Congress 2021

Real-world outcomes associated with pyrotinib-based therapy for HER2-positive metastatic breast cancer

Li Hao¹, Jian Chen¹, Manping Chen¹, Xinghua Han¹, Yueyin Pan^{1,2}

¹Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, People's Republic of China. ²Department of Tumor Biotherapy, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui Province, People's Republic of China.

Table 1. Patient characteristics at baseline

Background

- Pyrotinib has been shown to have significant antitumor activity and tolerable toxicity in patients with HER2-positive advanced breast cancer in existing clinical trials. However, there are few real-world data.
- This multicenter restrospective study was conducted to evaluate the effectiveness and safety of pyrotinib in the treatment of HER2-positive metastatic breast cancer in the real world setting.

Methods

• A total of 305 patients who received pyrotinib for the treatment of HER2-positive metastatic breast cancer from 12 medical institutions in China between March 2019 and April 2021 were included in this study, and 279 patients with available objective response rate (ORR) and progression-free survival (PFS) data were analyzed in this report.

Results

- Among the 279 patients, 56.6% had received at least 2line systemic therapy before pyrotinib treatment, and 78.1% had been exposed to at least one anti-HER2 agent (Table 1).
- The ORR in the total study population was 34.1%, and the median PFS (mPFS) was 8.8 months. The ORR and mPFS in subgroups are shown in Table 2 and Figure 1, respectively.
- Cox multivariate analysis showed that frontline use of pyrotinib-based systemic therapy, no brain metastases, and no change in HER2 status were independent prognostic factors of PFS.
- The most common grade 3-4 adverse events were diarrhea (21.6%) and hand-foot syndrome (8.2%).

Corresponding author: Yueyin Pan (E-mail: panyueyin@ustc.edu.cn) and Xinghua Han (E-amil: Hanxhua123@163.com)

Table 1. I attent characteristics at baseline		Table 1 (continueu)		
Characteristic	Patients	Pyrotinib		61 (21.9)
	(N=279)	Others		4 (1.4)
Age, years, median (range)	52 (27-81)	Trastuzumab resistance status		
Eastern Cooperative Oncology Group performance status		Resistant		50 (17.9)
0-1	248 (88.9)	Refractory		192 (68.8)
≥2	31 (11.1)	Unknown		37 (13.3)
Hormone receptor status		Ki-67 level		
Hormone receptor positive	182 (65.2)	≤30%		127 (45.5)
Hormone receptor negative	97 (34.8)	>30%		131 (47.0)
Surgery for primary breast cancer	245 (87.8)	Unknown		21 (7.5)
Adjuvant therapy with trastuzumab	64 (22.9)	Change in HER2 status		
Disease-free interval, years		Positive to negative		4 (1.4)
≤1	59 (21.1)	Negative to positive		18 (6.5)
>1	186 (66.7)	No change		77 (27.6)
Metastatic disease at diagnosis	34 (12.2)	No second biopsy		180 (64.5)
Metastatic sites		Data are shown as n (%), unless otherwise indicated		
Lymph nodes	155 (55.6)	Data are shown as it (70), amess otherwise indicated	•	
Lung	149 (53.4)	Table 2. ORR in subgroups		
Bone	117 (41.9)	Table 2. OKK in subgroups		
Liver	116 (41.6)	Subgroups	ORR	Р
Brain	94 (33.7)	Lines of systemic therapy with pyrotinib	-	
Chest wall	53 (19.0)	1 (n=45)	53%	
Pleura	26 (9.3)	2(n=76)	41%	0.001
Contralateral breast	17 (6.1)	$\geq 3 (n=158)$	25%	01001
Skin	5 (1.8)	Lines of anti-HER2 therapy with pyrotinib	2070	
Number of metastatic sites		1 (n=61)	46%	
1	59 (21.1)	2(n=165)	35%	0.010
2	76 (27.3)	$\geq 3 (n=53)$	19%	0.010
≥ 3	144 (51.6)	Pyrotinib-based therapy	17/0	
Visceral metastases	233 (83.5)	Combination therapy $(n=251)$	36%	
Lines of systemic therapy with pyrotinib		Monotherapy $(n=28)$	14%	0.020
1	45 (16.1)	Pyrotinib-based combination	14/0	
2	76 (27.3)	Pyrotinib plus capecitabine (n=159)	41%	
≥ 3	158 (56.6)	Pyrotinib plus other chemotherapy drugs (n=92)	28%	0.045
Lines of anti-HER2 therapy with pyrotinib		Prior exposure to lapatinib	20%	
1	61 (21.9)	Yes $(n=58)$	210/	
2	165 (59.1)		21%	0.016
≥3	53 (19.0)	No (n=221)	38%	
Prior HER2-targeted therapy		Liver metastases	070/	
Trastuzumab	250 (89.6)	Yes $(n=116)$	27%	0.029
Lapatinib	58 (20.8)	No (n=163)	39%	
Antibody-drug conjugate	10 (3.6)	Brain metastases	014	
Pertuzumab	5 (1.8)	Yes (n=94)	31%	0.422
Neratinib	1 (0.4)	No (n=185)	36%	_ /
First-line anti-HER2 therapy		Change in HER2 status		
Trastuzumab	201 (72.0)	Yes (n=22)	14%	0.016
Lapatinib	13 (4.7)	<u>No (n=77)</u>	42%	0.010

Table 1 (continued)

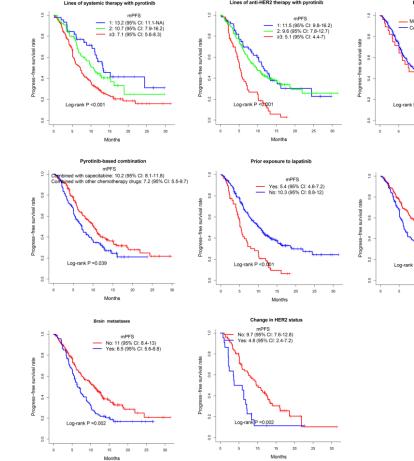


Figure 1. Kaplan–Meier curves of PFS and log-rank analysis for patients with HER2-positive metastatic breast cancer.

Conclusion

• This study is currently the largest real-world study of pyrotinib in the treatment of HER2-positive metastatic breast cancer with a relatively long follow-up period. It demonstrates that pyrotinib has an encouraging efficacy and good tolerability in actual clinical practice. It is also effective for patients who have previously used lapatinib or who present with brain metastases, and it is suggested that frontline use of pyrotinib-based therapy may result in higher effective rate and better prognosis. Patients with liver metastases or HER2 status transition have a poor prognosis and require more attention in clinical work.

