

### **METASTATIC NON-SMALL CELL LUNG CANCER:**

#### Resistance to EGFR TKIs

#### CLINICAL CASE DISCUSSION

#### Pasi A. Jänne

Lowe Center for Thoracic Oncology; Dana Farber Cancer Institute Boston, MA

#### **DISCLOSURE**

**Consultant**: Astra Zeneca, Boehringer Ingelheim, Pfizer, Genentech/Roche, Chugai Pharmaceuticals, Merrimack Pharmaceuticals, Ariad, Ignyta, LOXO Oncology, Eli-Lilly, Araxes Pharmaceuticals, Mirati Therapeutics, SFJ Pharmaceuticals

Research Support: Astellas, AstraZeneca, Daiichi-Sankyo, PUMA, Eli-Lilly, Boehringer Ingelheim

**Stockholder**: Gatekeeper Pharmaceuticals, LOXO Oncology

Other: LabCorp – post-marketing royalties from DFCI owned intellectual property on *EGFR* mutations



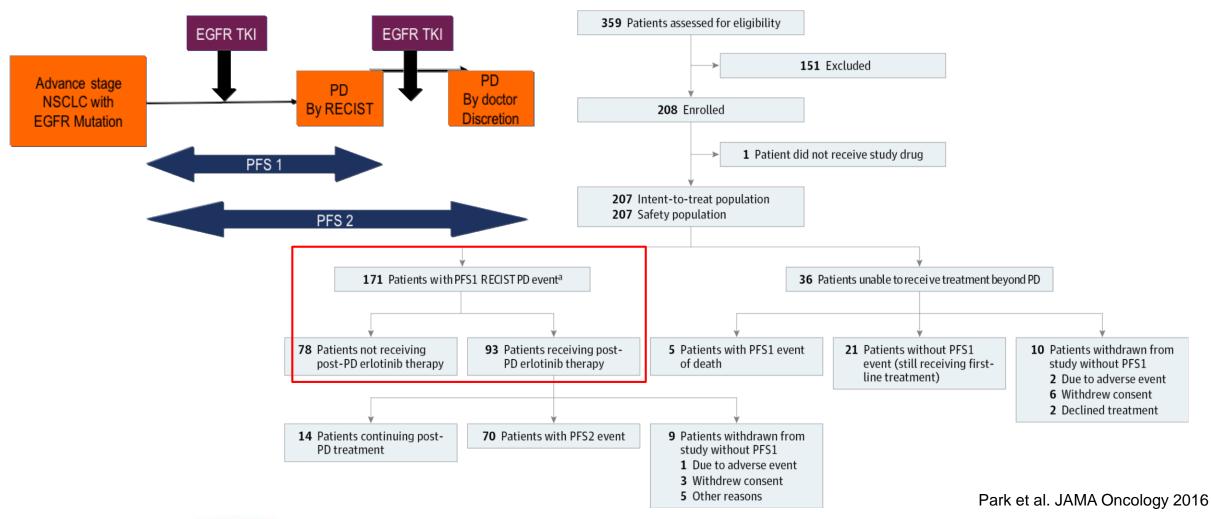


#### CLINICAL PRACTICE GUIDELINES

Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up<sup>†</sup>

D. Planchard<sup>1</sup>, S. Popat<sup>2</sup>, K. Kerr<sup>3</sup>, S. Novello<sup>4</sup>, E. F. Smit<sup>5</sup>, C. Faivre-Finn<sup>6</sup>, T. S. Mok<sup>7</sup>, M. Reck<sup>8</sup>, P. E. Van Schil<sup>9</sup>, M. D. Hellmann<sup>10</sup> & S. Peters<sup>11</sup>, on behalf of the ESMO Guidelines Committee<sup>\*</sup>

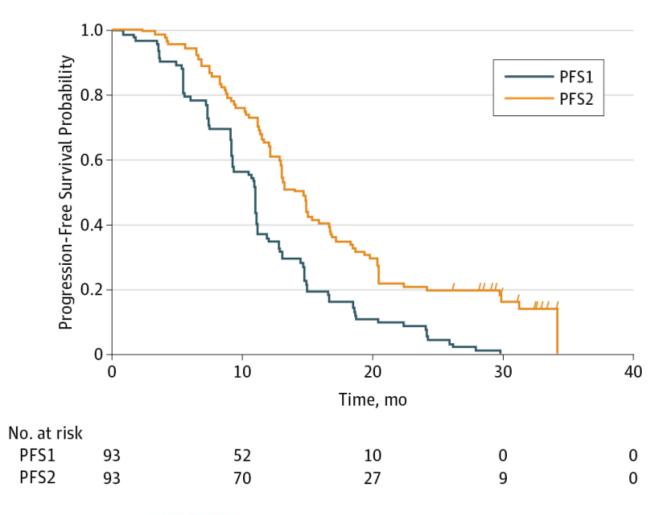
<sup>1</sup>Department of Medical Oncology, Thoracic Group, Gustave-Roussy Villejuif, France; <sup>2</sup>Royal Marsden Hospital, London; <sup>3</sup>Aberdeen Royal Infirmary, Aberdeen University Medical School, Aberdeen, UK; <sup>4</sup>Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy; <sup>5</sup>Thoracic Oncology Service, Netherlands Cancer Institute, Amsterdam, The Netherlands; <sup>6</sup>Division of Cancer Sciences, University of Manchester, Manchester, UK; <sup>7</sup>Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; <sup>8</sup>LungenClinic Airway Research Center North (ARCN), German Center for Lung Research, Grosshansdorf, Germany; <sup>9</sup>Department of Thoracic and Vascular Surgery, Antwerp University Hospital and Antwerp University, Antwerp, Belgium; <sup>10</sup>Weill Cornell Medical College, New York, USA; <sup>11</sup>Medical Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland




### Q1. Treatment options?

- 1. Continue erlotinib until patient is symptomatic?
- 2. Switch to chemotherapy and stop erlotinib?
- 3. Add in chemotherapy and continue erlotinib?
- 4. Perform rebiopsy and treat according molecular profile?
- 5. Switch to chemotherapy plus immunothreapy?



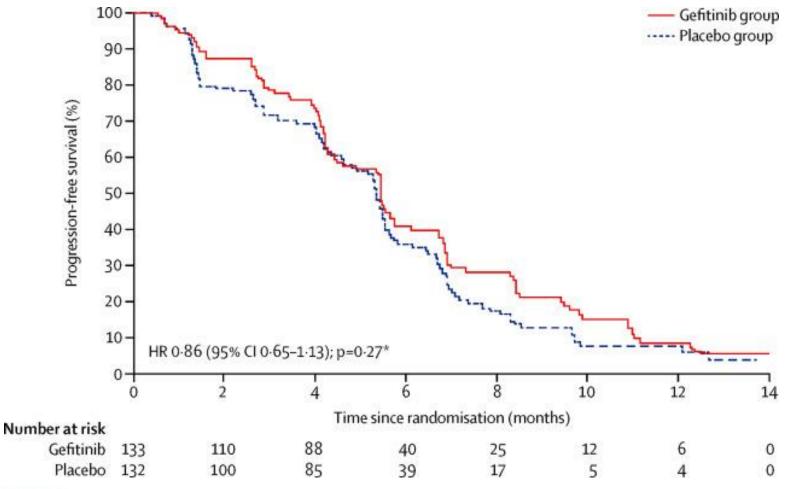

# ASPIRATION Study – continuation of first-line erlotinib post RECIST defined progression





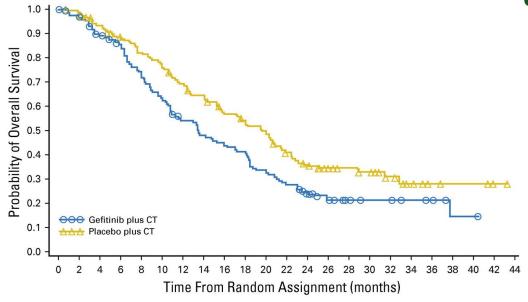
EGFR, epidermal growth factor receptor; NSCLC, non-small cell cancer; PD, PD-1, programmed cell death protein 1 and PD-L1, programmed death-ligand 1; PFS, progression-free survival; TKI, tyrosine kinase inhibitor;

# ASPIRATION Study – continuation of first-line erlotinib post RECIST defined progression




PFS 1 = 11.0 months; PFS 2 = 14.9 months

Patients who continued post PFS therapy had better PS, longer initial PFS and better depth of response




# IMPRESS – Evaluation of continuation versus stopping of gefitinib at the time of chemotherapy following disease progression to first-line gefitinib therapy





IMPRESS – Evaluation of continuation versus stopping of gefitinib at the time of chemotherapy following disease progression to first-line gefitinib therapy



| No. | at | risk: |  |
|-----|----|-------|--|
|     |    |       |  |

Gefitinib plus CT 133 125 111 103 87 76 63 56 51 48 38 32 23 16 11 9 9 6 5 2 2 0 0

Placebo plus CT 132 130 119 108 101 93 84 77 66 61 57 45 36 26 22 20 13 7 4 3 3 1 0

| Final OS (66% maturity)                  | Gefitinib Plus CT<br>(n = 133)       | Placebo Plus CT<br>(n = 132) |
|------------------------------------------|--------------------------------------|------------------------------|
| Median OS, months                        | 13.4                                 | 19.5                         |
| No. of events, No. (%)                   | 94 (70.7)                            | 82 (62.1)                    |
| HR <sup>*</sup> (95% CI); <i>P</i> value | 1.44 (1.07 to 1.94); <i>P</i> = .016 |                              |
|                                          | 950 000                              | - VS:                        |

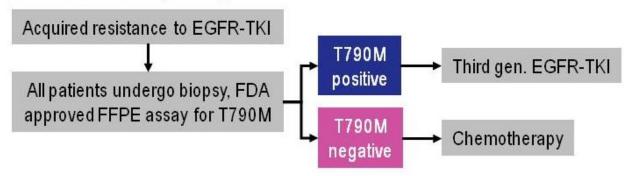
| 2014 OS (33% maturity)                   | Gefitinib Plus CT<br>(n = 133) | Placebo Plus CT<br>(n = 132)         |  |
|------------------------------------------|--------------------------------|--------------------------------------|--|
| Median OS, months                        | 14.8                           | 17.2                                 |  |
| No. of events, No. (%)                   | 50 (37.6)                      | 37 (28.0)                            |  |
| HR <sup>*</sup> (95% CI); <i>P</i> value | 1.62 (1.05 to 2.5              | 1.62 (1.05 to 2.52); <i>P</i> = .029 |  |

CT, chemotherapy; HR, hazard ratio; ORR, objective response rate; OS, overall survival; PFS, progression-free survival

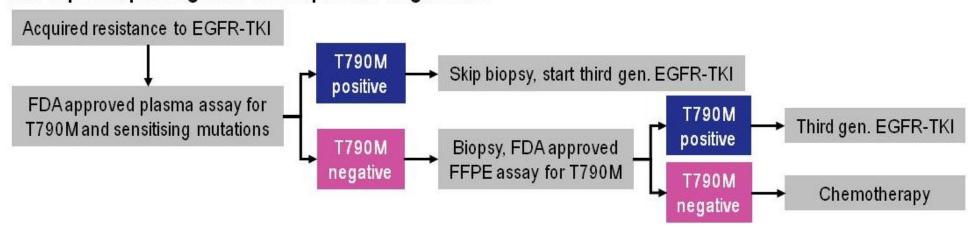
# Use of tumour or plasma genotyping for *EGFR T790M* and the efficacy of osimertinib



PFS 9.7 months


PFS 9.7 months

Oxnard et al. JCO 2016




# Use of tumour or plasma genotyping for *EGFR T790M* and the efficacy of osimertinib

#### A. Conventional paradigm



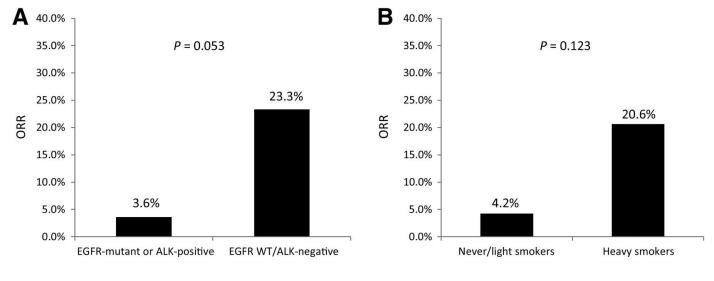

#### B. Proposed paradigm for use of plasma diagnostics

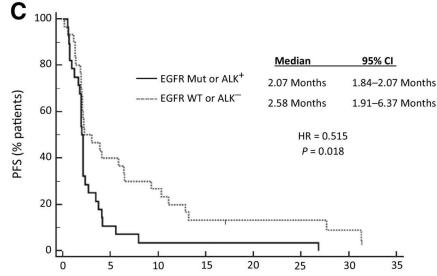


Oxnard et al. JCO 2016



# Osimertinib versus chemotherapy in *EGFR T790M* NSCLC following progression on prior EGFR TKI treatment



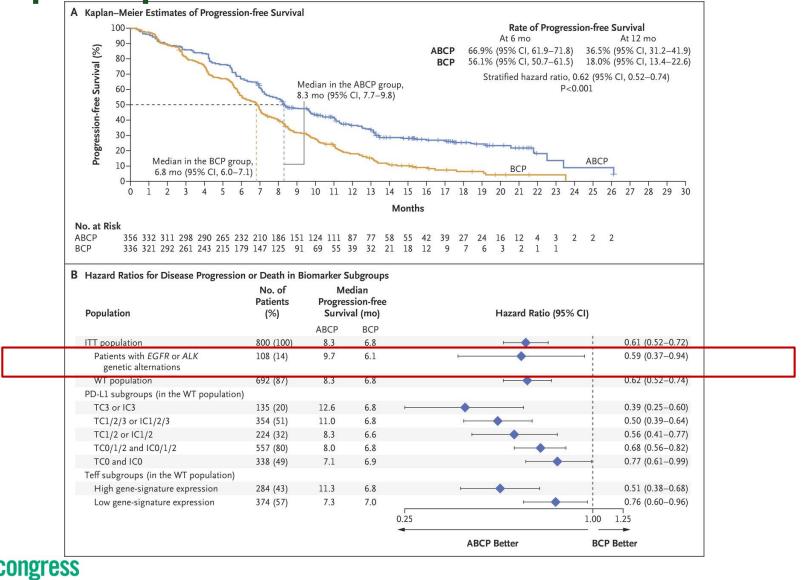


RR: 71% versus 31%; p < 0.001



Mok T. et al. NEJM 2017

# Efficacy of single agent anti-PD-1 or anti-PD-L1 therapies in *EGFR* mutant NSCLC patients






Months

Chemotherapy/pembrolizumab trials (and label) excluded patients with *EGFR* mutations

Gainor et al. CCR 2016

# Carboplatin/paclitaxel/bevacizumab/atezolizumab versus carboplatin/paclitaxel/bevacizumab in advanced NSCLC





### Second-line treatment of *EGFR* mutant NSCLC – Summary

- EGFR TKI should be stopped when patient starts chemotherapy treatment for EGFR inhibitor resistance
- All tumours with clinical evidence of resistance, not previously treated with osimertinib, should be tested for EGFR T790M
- Testing for EGFR T790M can be from a liquid biopsy; if negative a tumour biopsy should be performed
- Osimertinib is the standard of care for patients with EGFR T790M detected either from a liquid or tissue biopsy
- Platinum based doublet chemotherapy is the standard of care for patients who are EGFR T790M negative from tissue biopsy (or liquid biopsy when tissue biopsy not feasible)
- Combination of carboplatin/paclitaxel/bevacizumab/atezolizumab is a potential treatment option once all targeted therapies have been exhausted

### Progression after osimertinib

Chemotherapy alone or combination of carboplatin/paclitaxel/bevacizumab/atezolizumab are potential treatment options following progression of second-line osimertinib

Clinical trials underway to evaluate optimal strategy for osimertinib resistance including resistance based on a specific molecular alteration

