Optimal Management of Ovarian cancer- Decisions and options

Jonathan A Ledermann
UCL Cancer Institute, London UK

Disclosures

Jonathan Ledermann has attended Advisory Boards and given invited lectures for AstraZeneca with remuneration to his institution.

Advisory Boards: Clovis Oncology, Bayer, Oxigene, Merck/MSD,

He is the Chief Investigator of Study 19 with olaparib but has not received any financial compensation.

Speaking honoraria Roche

Topics

- Integration of surgery and chemotherapy
- Choices for first line therapy
- Follow-up and re-treatment
- Choices for 'platinum-sensitive' recurrence
- BRCA mutation testing biomarker for treatment
- Challenges for treating 'platinum-resistant' disease

Surgery

- Complete removal of visible tumour carries prognostic importance
- optimal debulking = no residual disease

No residual disease v < 1 cm HR 2.20 (95% CI 1.90-2.54) Cochrane meta-analysis. Elattar et al 2011

du Bois A et al. Cancer 2009;115:1234-1244

Surgery and 'neoadjuvant' (primary) chemotherapy for advanced ovarian cancer

Vergote et al 363: 943–53 N Engl J Med 2010

Primary chemotherapy *versus* primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial

Kehoe et al Lancet Oncol 2015 386: 249-57

Conclusions

- Surgical debulking has a key role in the management of first line disease- and extent of surgery is prognostic
- For advanced cases- 'borderline operable' neoadjuvant chemotherapy is equivalent to primary surgery
- But PFS and OS results are consistently lower than in trials where primary surgery was performed
- Extrapolation of results to all patients with advanced disease should be made with caution
- Trials of 'radical surgery' primary or neoadjuvant in specialised surgical centres is being planned

First-line therapy: Is three weekly carboplatin and paclitaxel still the standard of care?

Carboplatin + 3 weekly paclitaxel versus Carboplatin and weekly paclitaxel

Incorporation of bevacizumab into first line therapy

Months since Randomization

No. at Risk							
Control	625	535	283	169	133	78	49
Bev initiation	625	552	319	190	121	67	40
Bev through-	623	559	386	256	162	97	56
out							

Burger et al N Engl J Med (2011) 365:2473-83

GOG 218

3-arm trial adding bevacizumab 15 mg/kg to standard carboplatin/paclitaxel continuing for up to 15 months maintenance

PFS Benefit but not OS

Licence by EMA (not FDA)

ICON 7

2 arm trial-

Bevacizumab 7.5 mg/kg 12 month maintenance PFS outcome similar

ICON 7 Initial results

Suboptimal stage III > 1 cm residual Stage IV

ICON 7 Final Overall Survival by Risk Group

Dose-dense chemotherapy and bevacizumab: GOG 262 Schema

Stage II-IV

Neoadjuvant optional

BEV optional

Chan et al ESGO 2013

GOG 262: Progression-free survival

Includes 13 % with neoadjuvant chemotherapy

Chan et al ESGO 2013

GOG 262: subgroup analyses

MITO-7 Dose-dense paclitaxel

810 patients

Carboplatin AUC 2, d1, 8, 15 q21 Paclitaxel 60 mg/m², d1, 8, 15 q21 Treatment repeated for 6 cycles

Weekly 406 377

Every 3 weeks

— Weekly

ICON8 trials programme, revised design

N=1485

ICON8

ICON8B

N=1170

	Arm 1	Carboplatin AUC 5	q3w	
		Paclitaxel 175mg/m ²	q3w	
\rightarrow	Arm 2	Carboplatin AUC 5 Paclitaxel 80mg/m ²	q3w q1w	
	Arm 3	Carboplatin AUC 2 Paclitaxel 80mg/m²	q1w q1w	<

NB. Patients with Stage III & residual disease after surgery or who are planned to receive neoadjuvant chemothererapy OR any patients with stage IV disease are still eligible for ICON8A as well as B so that they may still enter the trial if:

they have contra-indications to or decline bevacizumab their site does not have access to bev, e.g. in Australia Diagnosis of Stage III-IV EOC/PPC/FTC with >1cm residual disease after surgery or planned for neoadjuvant chemotherapy

Conclusions for first-line therapy

- Neoadjuvant chemotherapy an acceptable alternative if complete resection of tumour is not possible
 - Does it replace less good surgery, or is it equivalent only in advanced/inoperable disease?
- Carboplatin/paclitaxel remains the standard of care
- Addition of bevacizumab an option
 - Should it be given to all patients with advanced disease or only those in a poor prognostic group?
- Weekly paclitaxel may be better, or at least as good
 - Is there an interaction with bevacizumab?

Recurrent Ovarian Cancer and 'platinum-sensitivity'

Patterns of Relapse:

'Platinum-sensitive' and 'Platinum-resistant' ovarian cancer

Does surgical cytoreduction improve survival of patients with 'platinum-sensitive' recurrence?

AGO-OVAR DESKTOP III (Protocol AGO - OVAR OP.4- GCIG study)

Surgery - Randomisation

Platinum-based chemotherapy

GOG 213

Surgery - Randomisation

Carboplatin/paclitaxel +/- bevacizumab

+ve AGO score

- ECOG PS = 0
- Complete initial debulking
- <500ml ascites

Chemotherapy for 'platinum-sensitive' relapse

Timing of treatment

- OV05/EORTC 55959 showed no survival benefit in offering second-line therapy on the basis of a raised CA125
- Delay chemotherapy until clinical symptoms/ or significant radiological progression

Single agent platinum versus combination therapy?

PFS increased; meta-analysis shows a survival benefit*

Combination of Carboplatin/Paclitaxel (ICON4), Carboplatin/Gemcitabine (OVAR2.5), Carboplatin/PLD (CALYPSO) are all acceptable combination partners

Choice depends on:

- Balance of toxicities
- Timing from first-line therapy
 Potential use of drugs for' platinum-resistant' (non-platinum) therapy

Meta-analysis of platinum combination therapies

		Hazard Ratio	Hazard Ratio
Study	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ICON & AGO 2003	44.8%	0.81 [0.69, 0.97]	-
Pfisterer et al 2006	35.1%	0.96 [0.75, 1.23]	-
Alberts et al 2007	12.7%	0.69 [0.39, 1.21]	
González-Mart. et al 2005	7.5%	0.39 [0.18, 0.84]	
Total (95% CI)	100.0%	0.80 [0.64, 1.00]	•
Heterogeneity: Tau ² = 0.02; Chi ² = 5.44, df = 3 (P = 0.14); I^2 = 45% Test for overall effect: Z = 1.96 (P = 0.05)			0.1 0.2 0.5 1 2 5 10 Favours combination Favours single agent

		Hazard Ratio	Hazard Ratio
Study	Weight	IV, Random, 95% CI	IV, Random, 95% CI
ICON & AGO 2003	46.9%	0.75 [0.65, 0.87]	-
Pfisterer et al 2006	33.7%	0.72 [0.58, 0.90]	
Alberts et al 2007	9.6%	0.52 [0.31, 0.88]	
González-Mart. et al 2005	9.8%	0.45 [0.27, 0.76]	
Total (95% CI)	100.0%	0.68 [0.57, 0.81]	•
Heterogeneity: Tau ² = 0.01; Chi ² = 4.70, df = 3 (P = 0.19); I^2 = 36% Test for overall effect: Z = 4.30 (P < 0.0001)			0.1 0.2 0.5 1 2 5 10 Favours combination Favours single agent

Addition of anti-angiogenic therapy for the treatment of relapsed ovarian cancer- 'platinum sensitive' group

Aghajanian C, et al. J Clin Oncol. 2012;30(17):2039-2045

Aghajanian C, et al. Ann Oncol. 2014;25(Suppl4): Abstract 967O

Anti-angiogenic agents in 'platinum-sensitive' relapsed ovarian cancer

	Platinum Sensitive			Platinum-resistant (< 6 month PFI) and Partially Platinum-sensitive equally divided	
	OCEANS (n= 484)	55 5 2 2 3 4 15 5 15		TRINOVA-1*	
	Carboplatin/ gemcitabine ± bevacizumab	Carboplatin/ paclitaxel ± bevacizumab	Platinum-based ± cediranib	Weekly paclitaxel ± trebananib	
PFS (med. months) 8.4 v 12.4 10.4 v 13.8		8.7 v 11.1	7.2 v 5.4		
HR	0.484 (p<0.0001)	0.61 (p<0.0001)	0.57 (p=0.00001)	0.66 (p < 0.0001)	

Pazopanib and Cediranib: Oral VEGF receptor tyrosine kinase inhibitors

Trebananib (AMG386): Peptibody inhibiting angiopoeitin 2

* Non maintenance therapy

Which to chose and when?

(OCEANS) Aghajanian et al JCO 2011; (GOG 213) Coleman et al SGO 2015; (ICON6) Ledermann et al ECC (2013); (TRINOVA-1) Monk et al Lancet Oncol 2014; (AURELIA) Pujade-Lauraine et al JCO 2014; (MITO11) Pignata et al Lancet Oncol 2015

PARP Inhibitors and homologous recombination repair of DNA

- PARP is a key regulator of DNA damage repair processes
- Involved in DNA base-excision repair (BER)
- Binds directly to DNA damage
- Produces large branched chains of poly(ADP-ribose)
- Attracts and assists BER repair effectors

Olaparib maintenance in relapsed ovarian cancer - 'STUDY 19'

- Assess the efficacy of olaparib as a maintenance treatment in patients with platinum-sensitive, high-grade serous ovarian cancer
- Randomised, double-blind, placebo-controlled Phase II trial

Patient eligibility:

- Platinum-sensitive, high-grade serous ovarian cancer
- ≥2 previous platinum regimens
- <u>Last chemotherapy: platinum based with a maintained response</u>
- Stable CA-125 at trial entry
- Randomisation stratification factors:
 - Time to disease progression on penultimate platinum therapy
 - Objective response to last platinum therapy
 - Ethnic descent

82 sites in 16 countries

ClinicalTrials.gov identifier: NCT00753545 Ledermann J et al. N Engl J Med 2012;366:1382–1392

265 patients were randomized between September 2008 and February 2010

STUDY 19: Maintenance olaparib in 'platinumsensitive' BRCA^{mut} high grade serous ovarian cancer

NC, not calculable.

Study 19: interim survival in BRCAm population (52% maturity)

Safety Profile in STUDY 19 (BRCAm) Profile consistent with overall population

	All grades		Grade ≥ 3	
	Olaparib (N=74)	Placebo (N=62)	Olaparib (N=74)	Placebo (N=62)
Nausea	54 (73%)	20 (32%)	* 1 (1%)	0
Fatigue	40 (54%)	23 (37%)	* 5 (7%)	1 (2%)
Vomiting	27 (36%)	5 (8%)	* 2 (3%)	0
Diarrhoea	22 (30%)	12 (19%)	2 (3%)	1 (2%)
Anaemia	19 (26%)	3 (5%)	* 4 (5%)	1 (2%)

Any serious AE	25 (18.4%)	11 (8.6%)	16 (21.6%)	6 (9.7%)
AEs leading to dose reductions	34 (25%)	6 (4.7%)	19 (25.7%)	2 (3.2%)
Any AE leading to discontinuation	6 (4.4%)	2 (1.6%)	5 (6.8%)	0

STUDY 19 (BRCAm): 25% treated for ≥2 years

Data cut off: 26 November 2012 AstraZeneca data on file

BRCA mutations and HRD – predictive markers for sensitivity to PARP inhibitors- Implications for clinical practice

Bolton KL, et al. JAMA 2012

BRCA-related ovarian cancer

- often responds to multiple rounds of platinumbased therapy
- Survive longer than non-carriers

- Germline BRCA1/2 mutations
 - occur in approx. 1 in 400 women (higher in some ethnic groups eg Ashkenazi Jewish population 1 in 40)
 - approx. 17 % high-grade tumours; 6-8% tumours have somatic BRCA mutations
 - Most commonly in HGSOC- less common in endometrioid or clear cell
 - family history of cancer absent in 30% of BRCA ovarian cancer
 - 25% cases of BRCA ovarian cancer diagnosed over 60 years old
- Testing for BRCA mutations now needs to be part of routine care of patients with high grade ovarian cancer

'Platinum-sensitive' disease- summary

- Role of surgery at relapse remains unproven. Results of trials awaited
- Symptoms, interpretation of imaging and CA125 should guide decisions about re-starting chemotherapy
- Platinum combinations generally recommended
- Choice of platinum partner depends on prior therapy, toxicity profile, patient choice and future treatment plans
- Knowledge of BRCA mutation status prior to starting 2nd line therapy helps to inform choice between PARP inhibitor or bevacizumab

Challenges in multiply pretreated and 'platinum-resistant' ovarian cancer

- Platinum-resistance covers a wide range of biology
 - Persistent disease: little or no response to first-line therapy
 - Good partial or complete response and early relapse
 - Previous multiple lines of treatment
- Clinical Picture variable
 - Asymptomatic disease
 - Disease likely to cause organ dysfunction
 - Symptomatic progression or relapse
- Response rate to chemotherapy generally low
- Duration of response short (typically median PFS 3-4 months)
- Median survival in clinical trials around 12 months

Response and outcome to several lines of therapy

1620 patients from 3 randomised trials

PFS

OS

24.5% were re-challenged with platinum at 1st and 2nd relapse

Prognostic factors

- PFS: Optimal primary cytoreduction and platinum sensitivity: independent prognostic factors for survival up to 3rd relapse
- OS: FIGO stage

Value of treatment of multiply relapsed ovarian cancer

18-21 DECEMBER SINGAPORE

Months

Is there value in using platinum in women with 'platinum-resistant' disease?

Regimen	Author	Response Rate
Weekly cisplatin/etoposide	van der Burg et al (2002)	46%
Weekly carboplatin/paclitaxel	van der Burg et al (2013) Markman et al (2006) Sharma et al (2009) Havrilesky et al (2003)	51% 21% 60% 38%
Cisplatin/Gemcitabine	Rose et al (2003)	43%
PLD	Various (6 phase II trials) Green and Rose (2006)	7.7-25%
Weekly paclitaxel	Linch et al (2008) Lortholary et al (2012)	44% 35 %

Randomised phase II trial: of weekly paclitaxel alone, in combination with carboplatin or in combination with topotecan

	wP	wP + C	wP + wT
	(N = 57)	(N = 51)	(N = 57)
Overall response rate, n (%)	20 (35)	19 (37)	22 (39)
Complete response	3 (5)	7 (14)	6 (10)
Partial response	17 (30)	12 (24)	16 (28)
Stable disease, %	23	29	23
Progression, %	26	26	25
Nonevaluable, %	16	8	14

Lotholary et al Ann Oncol 2012

Bevacizumab in 'platinum-resistant' ovarian cancer

Efficacy	GOG-170D ¹ (n=62)	AVF2949g² (n=44)
Median PFS months	4.7	4.4
6-month PFS rate, %	40.3	27.8
ORR, %	21	16
Median OS, months	16.9	10.7

- 41.9% of patients in GOG-170D had platinum-resistant disease.
- 83.7% of patients in AVF2949g were primarily platinumresistant

Chemotherapy options (investigator's choice):

- Paclitaxel 80 mg/m² days 1, 8, 15, & 22 q4w
- Topotecan 4 mg/m² days 1, 8, & 15 q4w (or 1.25 mg/m², days 1–5 q3w)
- PLD 40 mg/m² day 1 q4w

Pujade-Lauraine et al ASCO 2012

¹Burger et al. J Clin Oncol. 2007; ²Cannistra et al. J Clin Oncol. 2007

AURELIA: bevacizumab in 'platinum-resistant' ovarian cancer (all chemotherapy regimens)

Pujade-Lauraine et al J Clin Oncol 2014

AURELIA Trial: Bevacizumab Added to chemotherapy in 'platinum-resistant' disease

Summary of best overall response rates (RECIST, CA-125 criteria or both)

^aDifference in overall response rate; 95% CI with Hauck–Anderson continuity correction

AURELIA Grade ≥3 adverse events

(additional to BEV events of interest)

HFS = hand-foot syndrome

Pujade-lauraine E, ASCO 2012

Aurelia Trial: Health-related QoL

Primary PRO hypothesis (Abdominal/ Gastrointestinal symptoms): Subgroup analysis week 8/9

Conclusions

- Bevacizumab has been shown to add value to chemotherapy in platinum-resistant disease but
 - Questions about value in > 2nd line therapy, maintenance beyond chemotherapy and effect of previous first-line bevacizumab remain
- Drug resistance in 'platinum-resistant' disease/multiply pre-treated a major obstacle
- Integration of oncology and palliative care important with emphasis on management of symptoms and QoL