

State-of-the-art in local disease

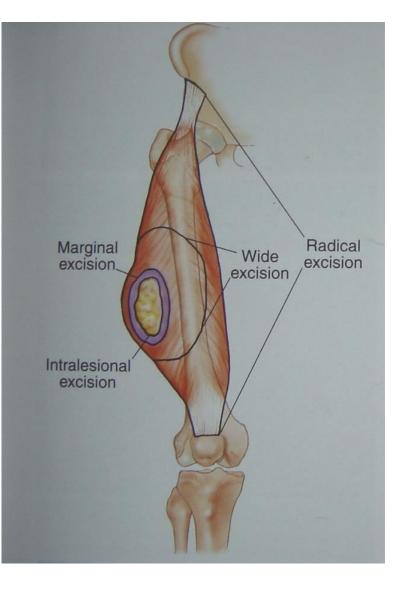
Dr. J Martin-Broto Virgen del Rocio University Hospital Sevilla, Spain

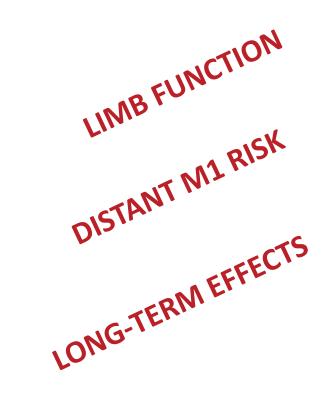
Disclosure slide

Consulting or Advisory Role

✓ PharmaMar, GSK, Novartis, Amgen, Bayer

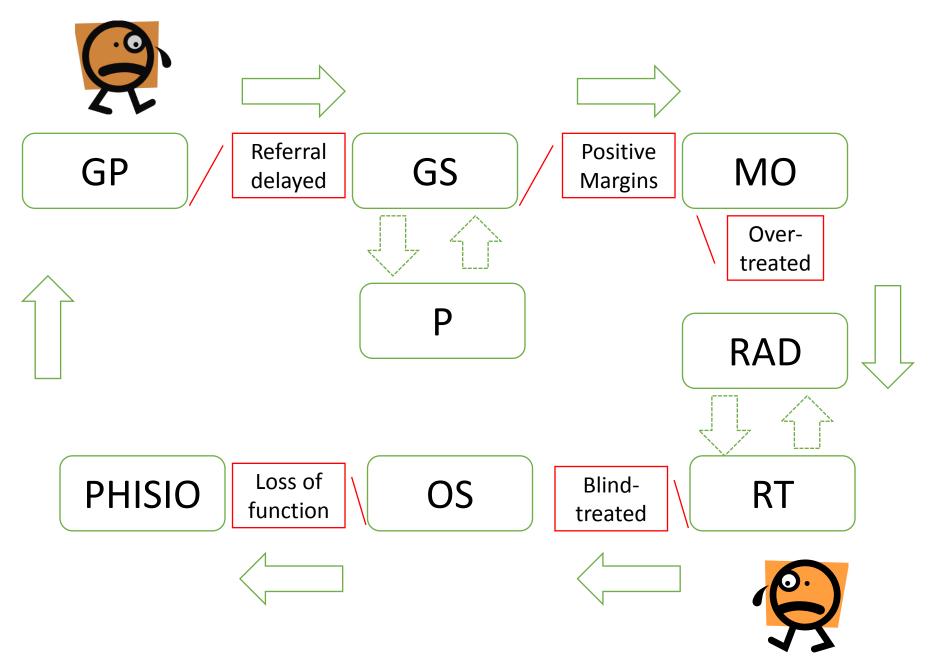
- Speakers' Bureau
 - ✓ PharmaMar

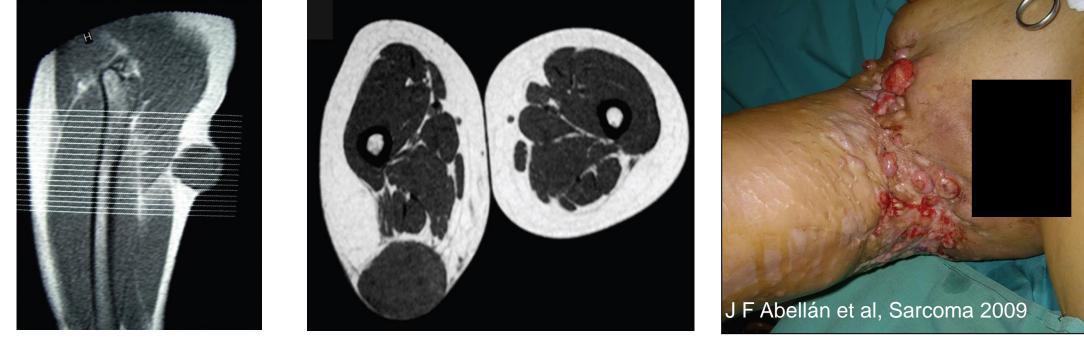



AGENDA

- 1) The role of MTD
- 2) SURGERY: The mainstay of local treatment
- 3) ADJUVANT THERAPIES:
 - RADIATION THERAPY
 - CHEMOTHERAPY

Enneking Classification of Surgical Margins


RESECTABLE RESECTABLE LOCAL RECURRENCE RISK OPERABLE



SURGERY: THE THERAPEUTIC MAINSTAY

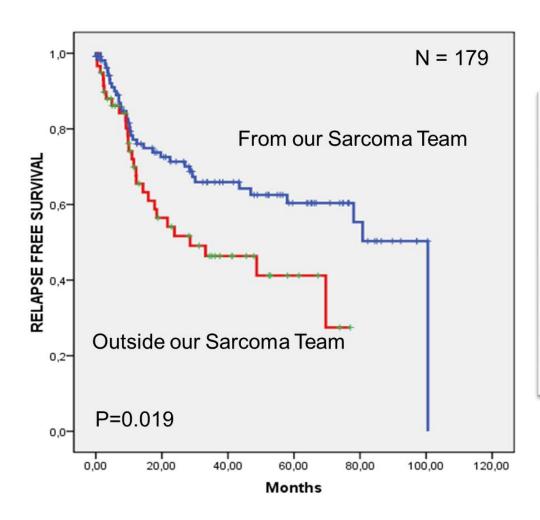
TERRIBLE LOOP IN REAL LIFE

Adequate biopsy: first step of good surgery

Planned surgery: Why not in STS?

Unplanned surgeries

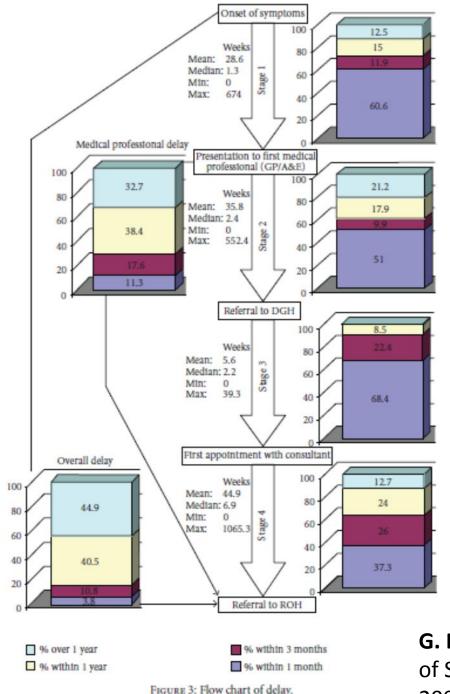
- UNDERESTIMATED
- EXCISIONAL BIOPSY
- INADEQUATE INCISION
- PSEUDOCAPSULE


Alert Signs*

- Recent Growth
- Mass > 5 cm
- Deep (attached mass)

(*) Johnson CJ et al. Clinical features of soft tissue sarcomas. Ann R Coll Surg Engl. 2001;83:203–5.

Origin of biopsy and imaging matters

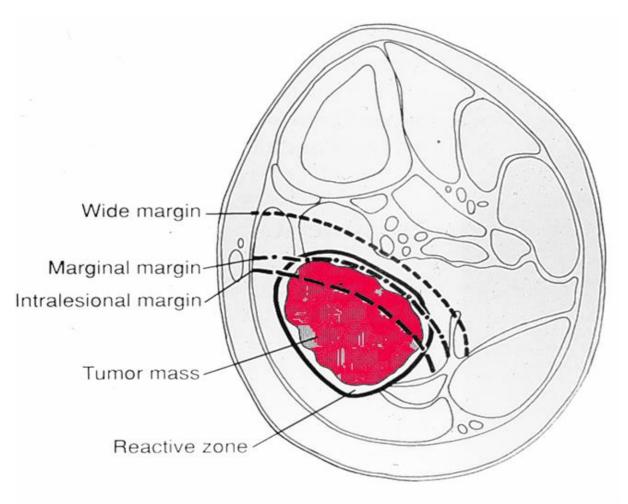

Preoperative MRI/CT	Negative margins	Positive margins	Total
Yes	72 (77.4%)	21 (22.6%)	93
No	22 (53.7%)	19 (46.3%)	41
Total	94 (70.1%)	40 (29.9%)	134 (100%)
p = 0.006			

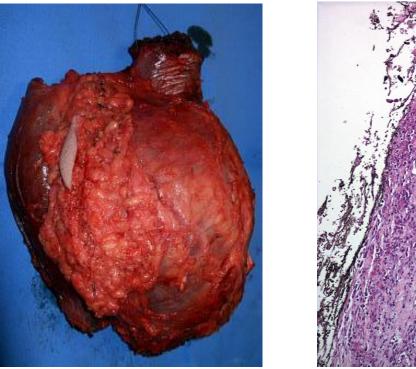
RFS according to the origin of the biopsy

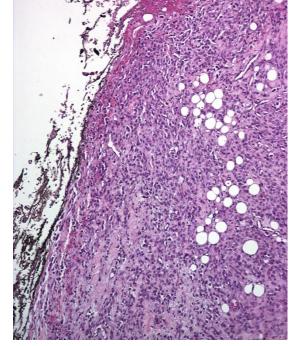
Correlation between MRI/CT before surgery with surgical margin status

Reference Centers (MTD teams in sarcoma)

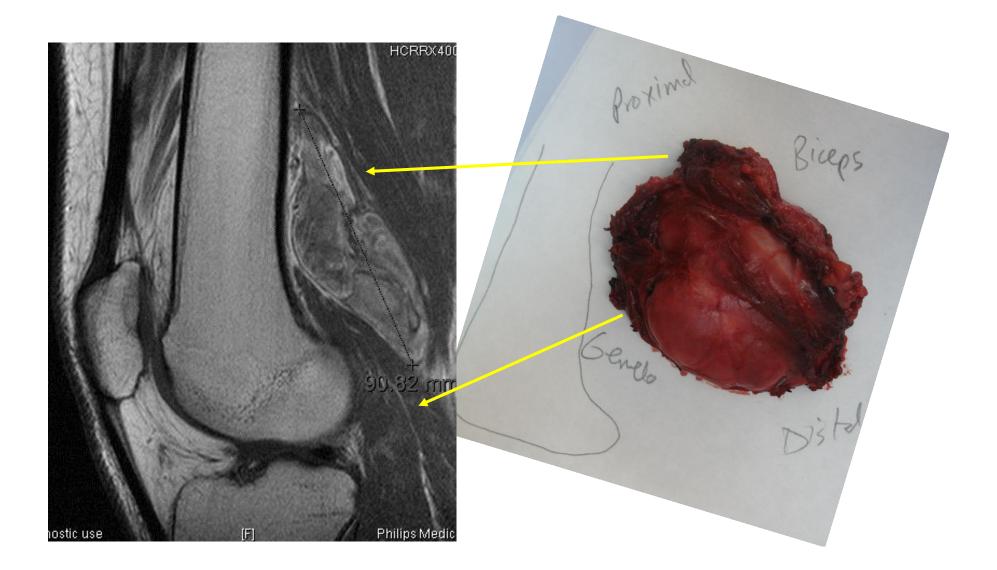
Study	Year	Objectives	n	Results	Advise?
Bhanghu et al. (UK)	2004	Specialist Center vs General Hospital	263	RFS 5a: 39% vs 19% OS: HR 0,59 in HRisk	Centralisation improves LC and OS in some.
Paszat et al. (Canada)	2002	Search a surrogate for expertise centers after a population based case series	1467	Risk for die: x1.4 and for amputation x3 if no treated in SC in the first 3 m	Advisable to refer patients with STS within first 3 m
Ray-Coquard et al. (France)	2004	To assess the conformity of medical practice to CG	100	Presurgery MDT and management in SC: predicted conformity and better LC	Treatment strategy within MDT: improves clinical outcome
Bauer et al. (Sweden)	2001	Report from Scandinavian Registry	1851	CT/MRI preS: 35 vs 80% Wide margin: 11 vs 66% LR: 0.7 vs 0.2	Improving outcome with referring policies
Wiklund et al. (Finland)	1996	Compare results after an MDT fo STS	134	LR: 48 vs 13% DFS: 36 vs 69%	Improved results are seen in that institution with that MDT

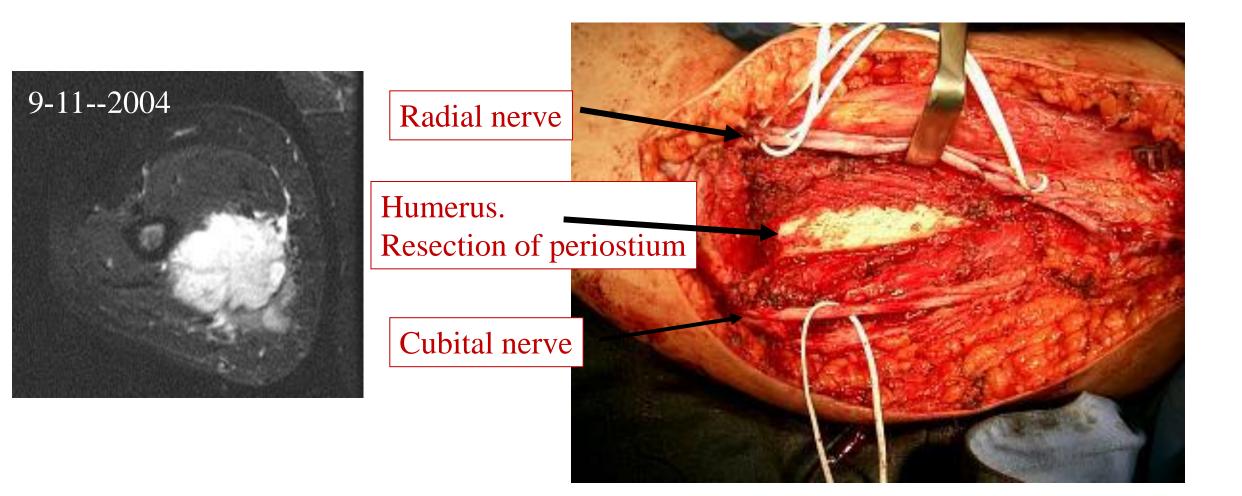



G. D. Johnson, G. Smith, A. Dramis, and R. J. Grimer, "Delays in Referral of Soft Tissue Sarcomas," Sarcoma, vol. 2008, Article ID 378574, 7 pages, 2008. doi:10.1155/2008/378574


General rules of Surgery in STS

- ✓ Goal of surgery is achieving a negative margin while preserving limb function
- ✓ What constitutes an appropriate margin is a matter of debate
- ✓ Margins of resection should be personalized to
 - Individual needs of patient, reflecting functional preferences
 - Sarcoma "needs" histology/grade, reflecting differences in tumor biology.


Main surgical principle: to avoid positive margins



Microscopic margins interpretation: Well oriented surgical specimen

SURGICAL BED

- Close to nerves
 - Epineurium Resection

Natural barriers resection: still wide resection

- Close to vessels
 - Adventicia Resection
 - Vessels Resection and by-pass

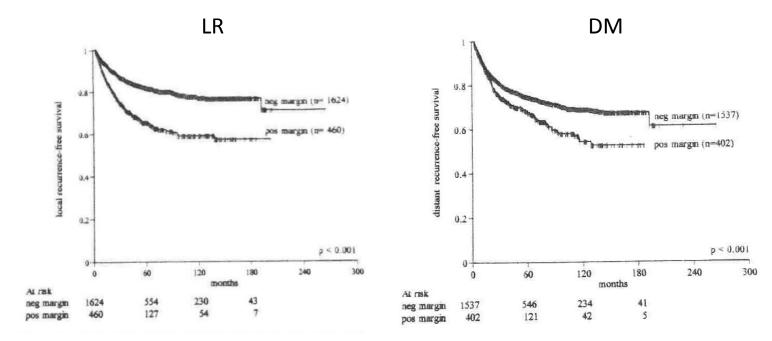
- Close to bone (Bone scan +)
 - Periostium Resection
 - Bone Resection
- Close to skin
 - Skin graft

HELP

RESECTION: •VASCULAR SURGEON

RECONSTRUCTION •PLASTIC SURGEON

The impact of Margins

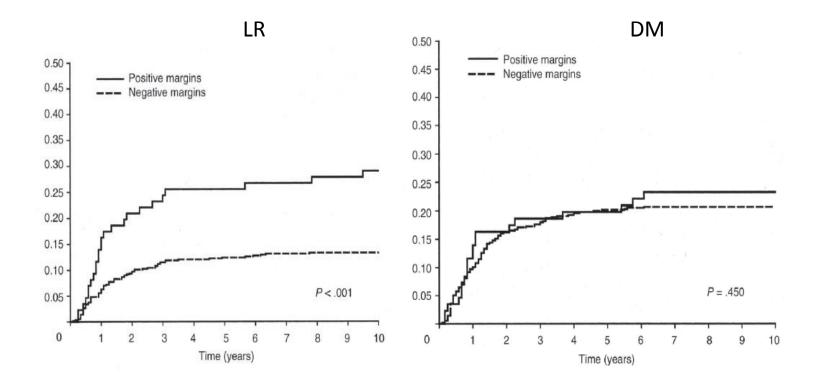

C+udy/	Time	Time		LR	rate	DR	rate	OS	rate
Study	period N		(months)	Margin+	Margin-	Margin+	Margin-	Margin+	Margin-
Zagars et al	1960-1999	666	139	36%	12%	25%	28%	69%	75%
Stodajadinovic et al	1982-2000	2084	50	35%	18%	32%	24%	70%	80%
Gronchi et al	1985-2005	997	85	26%	10%	20%	21%	71%	84%
Trovik et al	1986-1991	559	89	36%	18%	28%	28%	NR	NR

Prognostic Factors in Localized STS

Analysis of the Prognostic Significance of Microscopic Margins in 2,084 Localized Primary Adult Soft Tissue Sarcomas

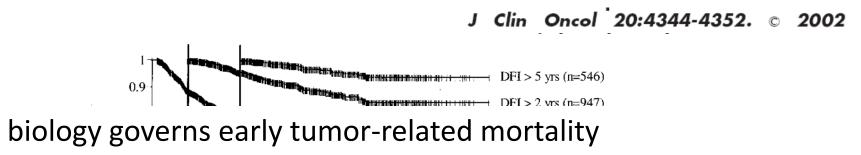
Alexander Stojadinovic, MD,* Denis H. Y. Leung, PhD,† Axel Hoos, MD, PhD,* David P. Jaques, MD,* Jonathan J. Lewis, MD, PhD, and * Murray F. Brennan, MD*

From the Departments of *Surgery and †Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York

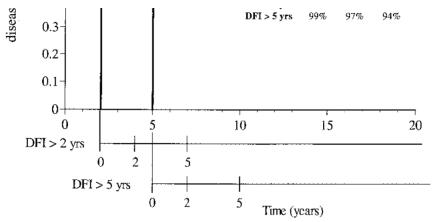

A Stojadinovic , Ann Surg 2002, 235: 424-34

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT


Status of Surgical Margins and Prognosis in Adult Soft Tissue Sarcomas of the Extremities: A Series of Patients Treated at a Single Institution

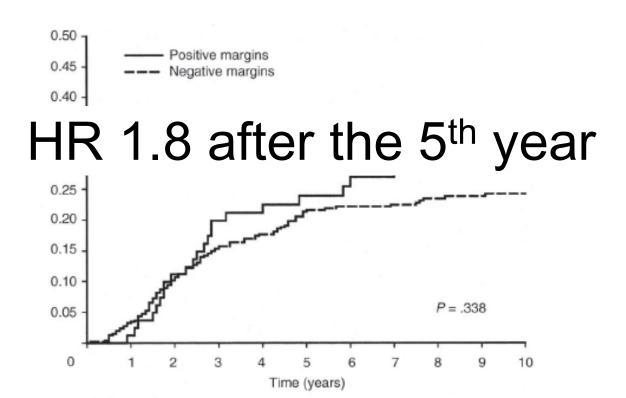
A. Gronchi, P.G. Casali, L. Mariani, R. Miceli, M. Fiore, S. Lo Vullo, R. Bertulli, P. Collini, L. Lozza, P. Olmi, and J. Rosai



Primary Adult Soft Tissue Sarcoma: Time-Dependent Influence of Prognostic Variables

By Alexander Stojadinovic, Denis H.Y. Leung, Peter Allen, Jonathan J. Lewis, David P. Jaques, and Murray F. Brennan

microscopic resection margins influence late outcome.



JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Status of Surgical Margins and Prognosis in Adult Soft Tissue Sarcomas of the Extremities: A Series of Patients Treated at a Single Institution

A. Gronchi, P.G. Casali, L. Mariani, R. Miceli, M. Fiore, S. Lo Vullo, R. Bertulli, P. Collini, L. Lozza, P. Olmi, and J. Rosai Mortality

Remarks in Surgery

Planned positive margins

- If Local recurrence rates are not worse
- Consider preoperative radiation therapy

Deliberate marginal excision

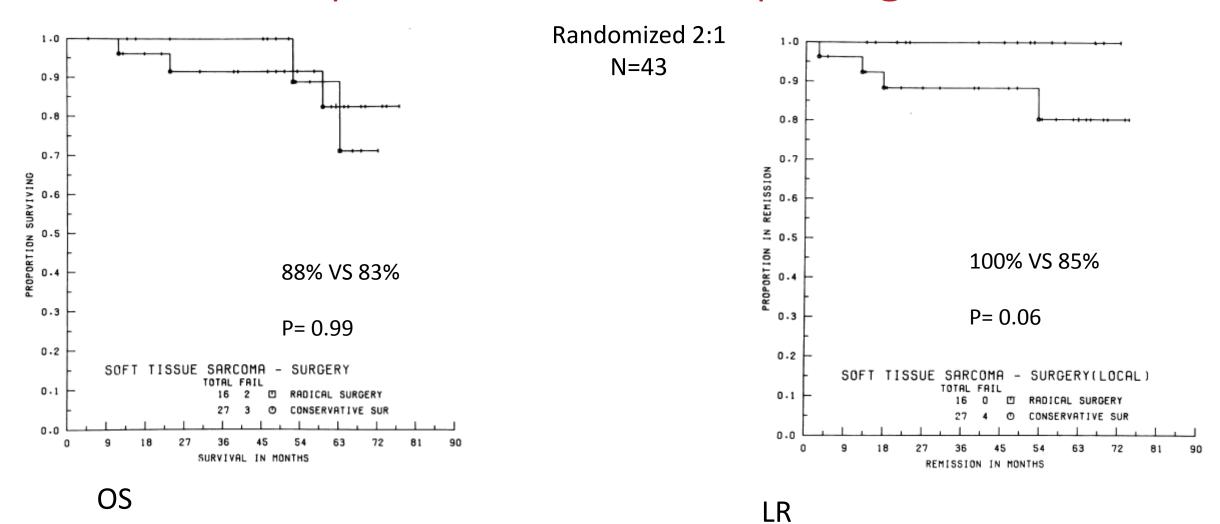
• For low grade, indolent sarcomas, prioritize function and quality of life

Extended margins

- Histologies with microscopic extensions
- Review imaging to determine extent of surgery and radiation field

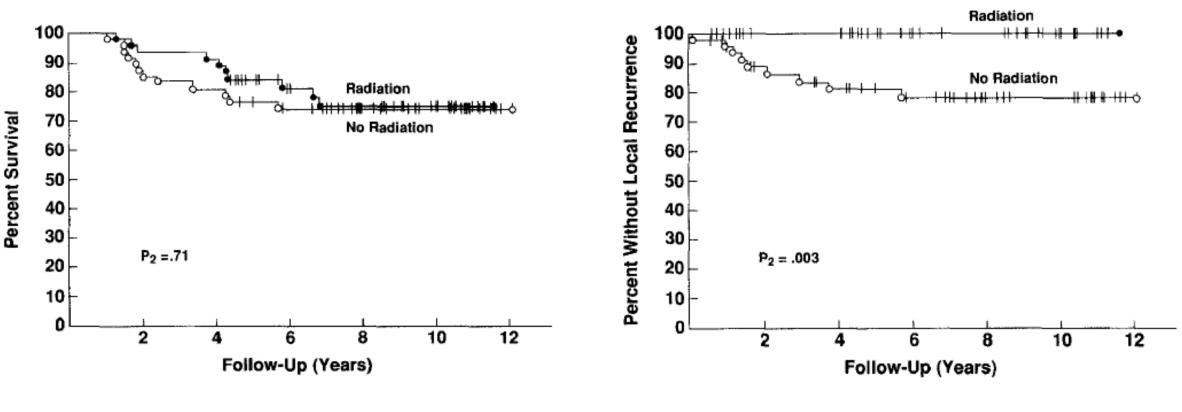
Amputation

• Limb residual function is poor


General rules of Radiation Therapy in STS

- ✓ Local control of adequate Limb Sparing + RTP is similar to Amputation
- ✓ Radiation therapy significantly improves local control (not survival)
- ✓ Doubtful in low risk for local recurrence: Low grade (with good surgery) or superficial tumors.

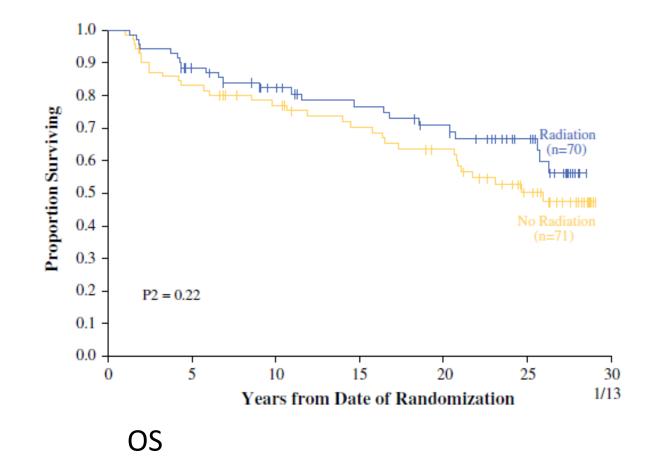
Milestones of Radiation Therapy in STS


Amputation vs Limb sparing+RTP

Rosenberg SA. Annals of Surgery. 1982;196(3):305-315.

Limb sparing vs Limb sparing+EBRT

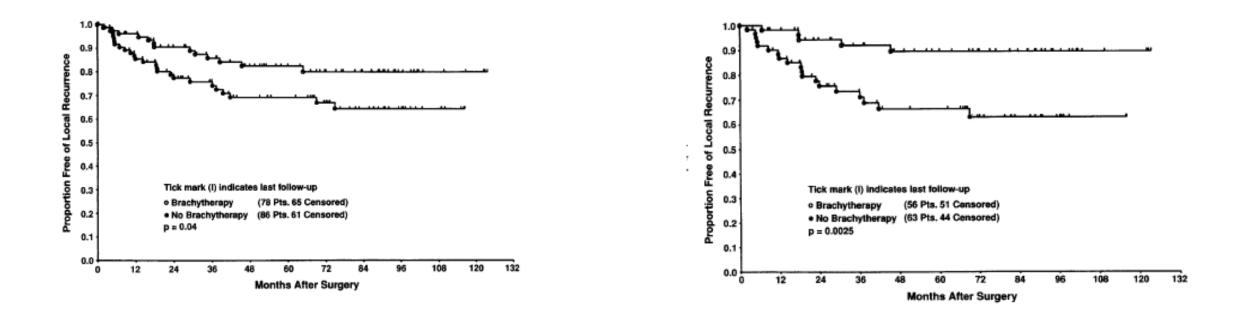
Randomized N=91 High grade



OS

LR

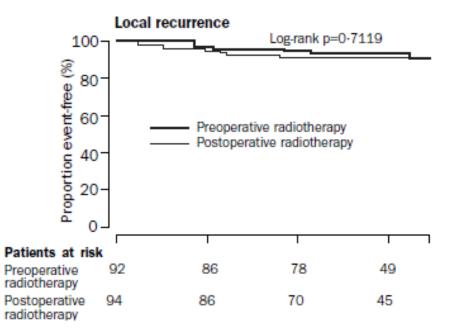
Yang JC, J Clin Oncol1998 Jan;16(1):197-203.


Limb sparing vs Limb sparing+ EBRT

Beane JD et al, Ann Srug Oncol 2014 Aug;21(8):2484-9.

Limb sparing vs Limb sparing + Brachytherapy

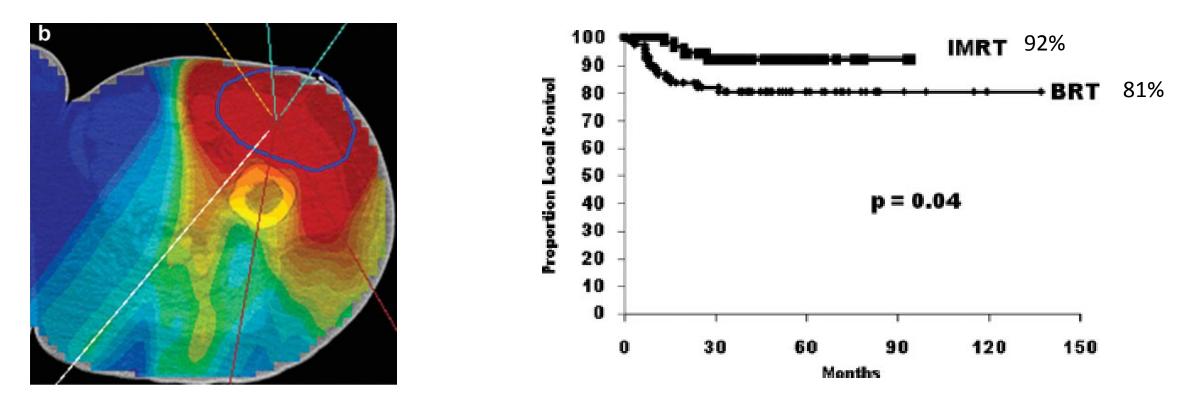
Randomized N=164


LR in high grade tumors

Pisters et al. J Clin Oncol 1996 Mar;14(3):859-68.

PreOperative vs PostOperative EBRT

	Preoperative (n=88)	Postoperative (n=94)
Wound complications*		
Yes	31 (35%)	16 (17%)
Secondary operation for wound repair	14 (45%)	5 (31%)
Invasive procedure for wound management+	5 (16%)	4 (25%)
Deep wound packing deep to dermis in area of wound at least 2 cm with or without prolonged dressings >6 weeks from wound breakdown‡	11 (35%)	7 (44%)
Readmission for wound care§	1 (3%)	0
No complications	57 (65%)	78 (83%)


*p=0.01 for ves vs no. †Without secondary operation. ‡Without secondary operation or invasive procedure. §Without secondary operation, invasive procedure, deep wound packing, or prolonged dressing.

O' Sullivan et al. et al. Lancet, 2002 Jun 29;359(9325):2235-41.

IMRT vs Brachytherapy

N= 134

• High grade

Wound complications:

- Limb sparing
- Limbs

19% IMRT vs 11% Brachytherapy

Remarks in Radiation Therapy

Local Control

• Limb sparing + RTP \rightarrow Local control rates of more than 80%

Radiation therapy modality

- No direct comparison between brachytherapy and EBRT
- Indirect comparison: better LC with IMRT
- IMRT can offer fewer number of secondary side effects

Radiation timing

- More acute toxicity for preoperative
- More late toxicity for postoperative?

General rules of perioperative Chemo in STS

✓ Still a controversial issue

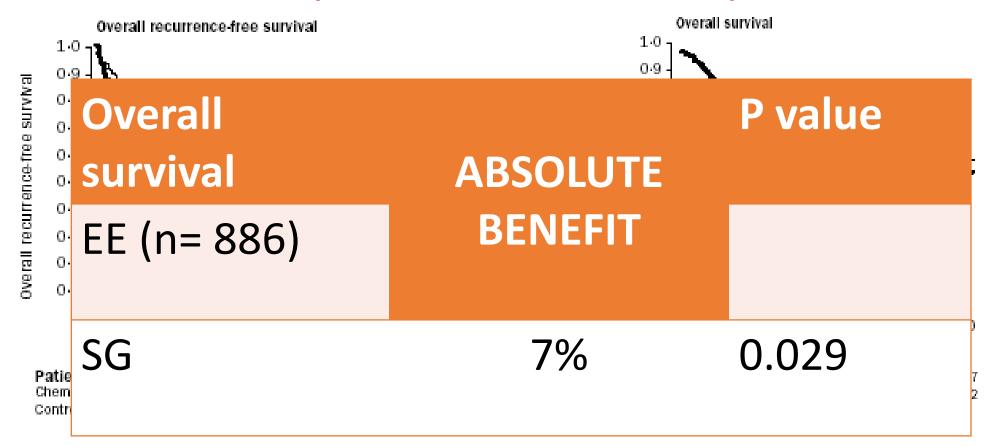
✓ According to meta-analysis: 7% of absolute benefit in Limbs

✓ Adequate selection is needed:

- High risk population
- Full dose scheme

	_		-	_
Factor	No. patients	Relative Risk	95% CI	р
Grade 1 2 3	154 492 553	1 3.12 7.81	1.83-5.35 4.63-13.17	3.2x10 ⁻⁵ 1.1x10 ⁻¹⁴
Tumor Size < 5 cm 5-9 cm ≥ 10 cm	260 415 524	1 1.5 2.02	1.11-2.09 1.47-2.76	0.01 1.2x10 ⁻⁵
Neurovascular involvement No Yes	985 214	1 1.5	1.21-1.89	0.0003
Tumor Depth Superficial Deep	165 1034	1 1.47	1.00-2.18	0.048

Cox Multivariate Analysis for Metastasis-free Survival (n= 1199)


J M Coindre, Cancer 2001, 91: 1914-26

Factors	UPS	LIPOS.	LEIOM.	SYNOV.	MPNST	UNCLASS.
Tumor Size	p= 0.005	p=0.0061	p=0.0001	p=0.0104	p=0.67	p=0.053
<5 cm	88.2 (78)	92.6 (14)	88.0 (41)	66.8 (39)	61.2 (12)	72.4 (21)
5-9 cm	65.4 (117)	94.7 (39)	52.7 (48)	56.3 (54)	57.6 (28)	58.2 (49)
≥ 10 cm	53.6 (147)	72.8 (130)	41.2 (59)	27.3 (26)	44.5 (29)	34.5 (66)
Tumor Depth	p=0.0043	p= 0.07	p=0.0002	p=0.0407	nd	p=0.042
Superficial	82.2 (69)	100 (11)	86.0 (35)	100 (5)		78.6 (14)
Depth	60.7 (279)	77.8 (177)	50.9 (112)	50.6 (120)		46.0 (125)
Grade	p< 0.0001	p<0.0001	p=0.002	p=<0.0001	p=0.33	p<0.0001
1	89.8 (33)	93.8 (85)	92.9 (16)		77.8 (5)	82.0 (18)
2	76.5 (160)	71.6 (71)	66.6 (65)	74.8 (56)	56.1 (26)	69.0 (75)
3	48.1 (156)	58.7 (32)	44.7 (67)	35.1 (69)	52.1 (41)	36.5 (65)

5-Year Metastasis free survival in the main histologic types

Multivariate analysis (Overall Survival)								
	GRADE 2 (HR (95% IC)	N=625) p	GRADE 3 HR (95% IC)	(N=627) p				
AGE > 51 años	2.1 (1.6-2.8)	< 0.0001	1.6 (1.2-2.1)	0.0002				
TUMOR > 5 cm	1.8 (1.3-2.5)	0.0003	1.6 (1.2-2.2)	0.003				
Local superficial	NS		0.6 (0.4-0.9)	0.02				
Neurovascular involvement	1.9 (1.3-2.6)	0.0001	1.5 (1.1-2.1)	0.003				
Adyuvant Chemo	0.8 (0.6-1.1)	0.15	0.6 (0.5-0.8)	0.0002				

Sarcoma Meta-analysis Collaboration (Lancet, 350:1647-54, 1997)

Endpoint	re	sults		P value
	Treatm.	Control	benefit	
RFS	55%	45%	10%	0.0001

Endpoint	re	sults	Absol benefit	P value
	Treatm.	Control		
OS	54%	50%	4%	0.12

Criticism of first generation trials

- Inadequate patient selection:
 - Heterogeneous population: Different grade, stage; locations; depth; surgical margins; staging
- Inadequate drug selection:
 - Only 3% of patients had received Ifosfamide
 - Low dose-intensity for anthracyclines

SECOND GENERATION TRIALS: Anthracyclines+lfosfamide

GROUP	SCHEME	TIME INTERVAL	D.I. (mg/m2/s)
NCI 92	ADR 70 IFOS 4	4 W X 5	ADR 17.5 IFOS 1000
EORTC 62931	ADR 75 IFOS 5	3 W X 5	ADR 25 IFOS 1667
RTOG 9514	ADR 20 D1-3 IFOS 2,5 D1-3 DTIC 225 D1-3	3 W X2 +4	ADR 20 IFOS 2500 DTIC 225
ITALY (Frustaci et. al)	EPI 60 D1-2 IFOS 1,8 D1-5	3W X 5	EPI 40 IFOS 3000

Systematic Meta-analysis

(Includes 2nd generation trials)

RELATIVE RISK 95% CI FOR LR, DR, OR, OS								
	LOCAL RECURRENCE		DISTANT RECURRENCE		OVERALL RECURRENCE		OVERALL SURVIVAL	
	RR	95%IC	RR	95%IC	RR	95%IC	RR	95%IC
DOXO	0.75	0.56-1.01	0.69	0.56-0.86	0.75	0.56-0.86	0.84	0.68-1.03
DOXO+IFOS	0.66	0.39-1.12	0.61	0.41-0.92	0.61	0.41-0.92	0.56	0.36-0.85
ALL	0.73	0.56-0.94	0.67	0.56-0.82	0.67	0.56-0.82	0.77	0.64-0.93
	5%	NTT 25	10%	NTT 10	10%	NTT 10	6%	NTT 17

ISG FIRST TRIAL: EPI+IFOS G3, deep, > 5 cm

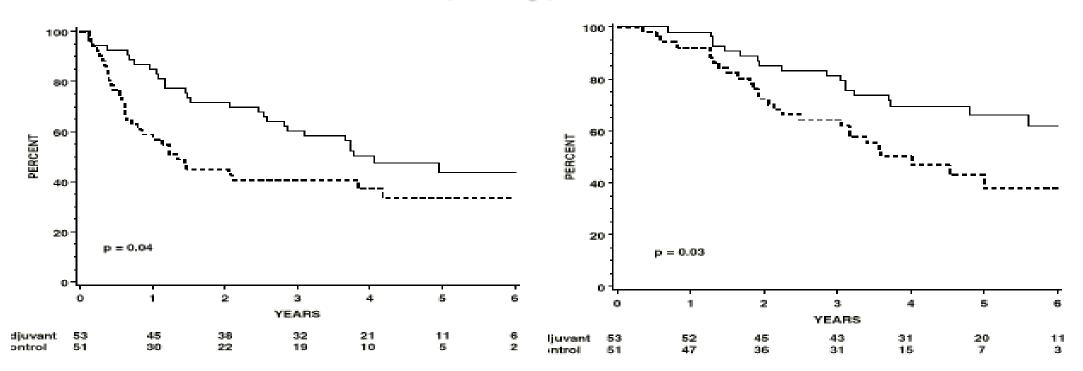
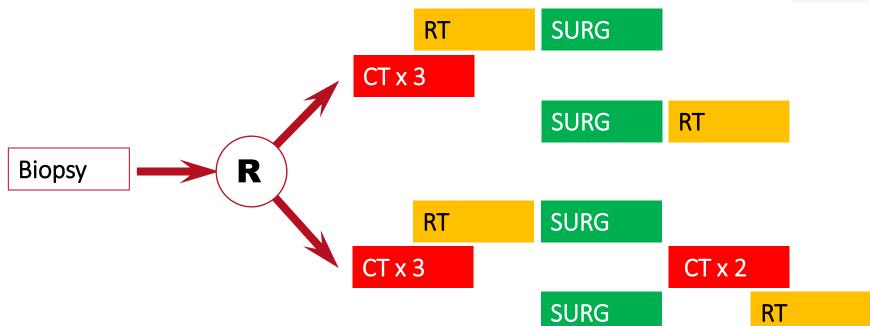


Figure 2. Disease-free Survival by Treatment

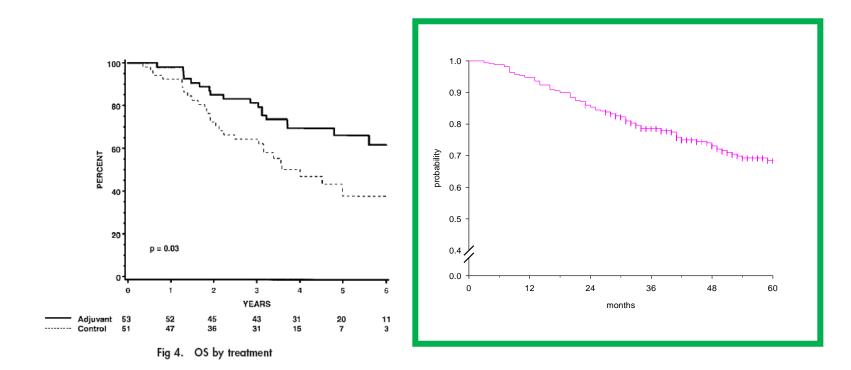
P=0.04

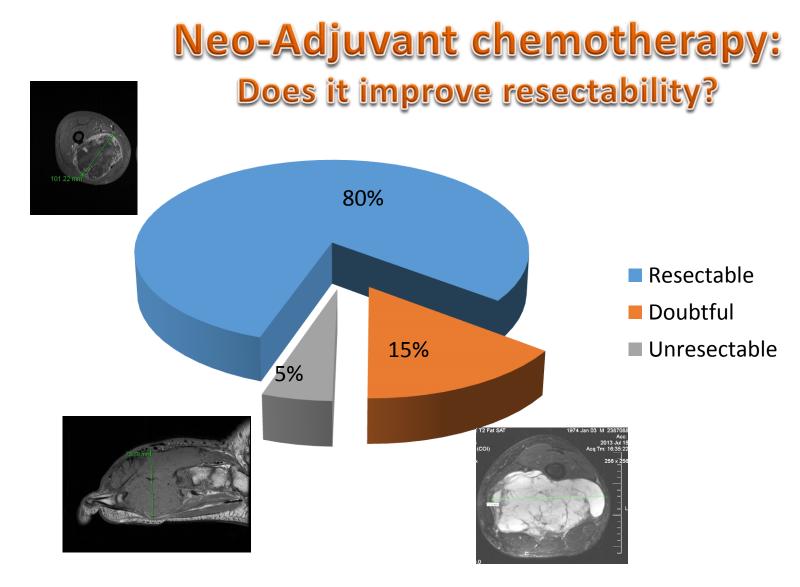
Median F.U.=59 m Minimum F.U.=36 m

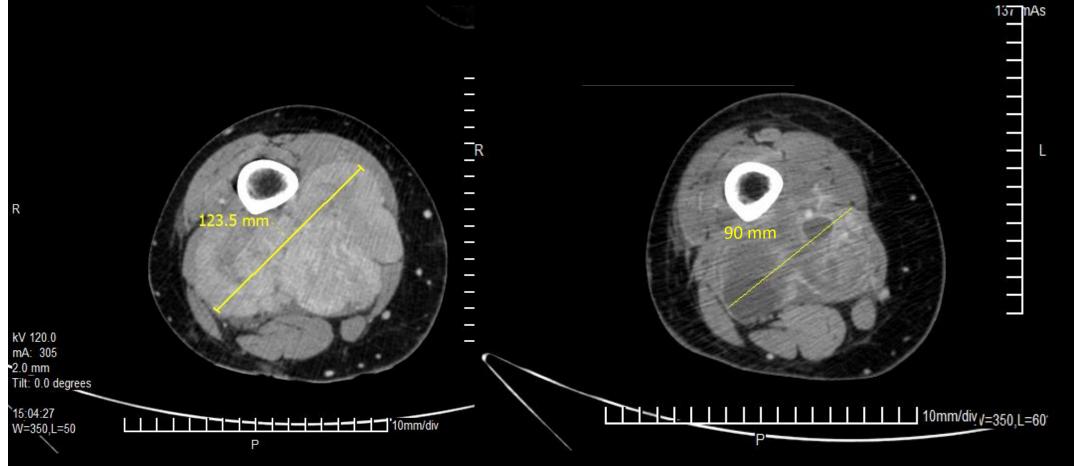
Figure 4. Overall Survival by Treatment



S. Frustaci et al, JCO, 2001, Vol. 19, 5


ISG Second TRIAL: EPI+IFOS G3, deep, > 5 cm



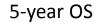

A. Gronchi, J Clin Oncol 30:850-856. 2012

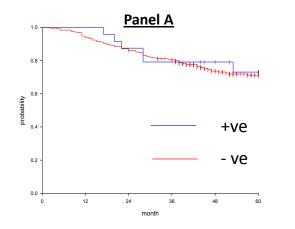
ISG First & Second TRIAL Equivalent OS

Sometimes yes... but not usually

3 courses CT (E.I.) + RT (50 Gy)

Annals of Oncology Advance Access published October 30, 2012


original article


Annals of Oncology 0: 1–7, 2012 doi:10.1093/annonc/mds501

Quality of surgery and neoadjuvant combined therapy in the ISG-GEIS trial on soft tissue sarcomas of limbs and trunk wall

A. Gronchi^{1*}, P. Verderio², A. De Paoli³, A. Ferraro⁴, O. Tendero⁵, J. Majò⁶, J. Martin⁵,
A. Comandone⁷, G. Grignani⁸, S. Pizzamiglio², V. Quagliuolo⁹, P. Picci¹⁰, S. Frustaci¹¹,
A. P. Dei Tos¹², E. Palassini¹³, S. Stacchiotti¹³, S. Ferrari¹⁴, M. Fiore² & P. G. Casali¹³

With Neo-adjuvant Chemo-RTP the impact of positive margins seems to be prevented

Neoadjuvant studies: some benefits

Author	Scheme	Patients	RTP timing	Study nature	Clinical benefit
Mahmaud	Doxo + ifosf x 4-6	G2-3 borderline resectable	Post Surgery	Retrospective N=97	Local control Trends DFS
Grobmayer	Doxo 75 + Ifos 6-9 x 3	G2-3; ≥ 5 cm; deep	no	Retrospective N=74	DSS in ≥ 10 cm
Delaney	MAID X 3	G2-3; ≥ 8 cm	Pre	Retrospective N=48	Distal M1* and OS*
Gortzak	Doxo 50 + Ifos 5 x 3	"High risk"	Post (some)	Prospective N= 150	No
Italiano	Doxo 50-60+ Ifos 6-7 g x 3	G2-3;	Post	Retrospective N=60	No
Curtis	Several: Doxo+Ifos; MAID	ST II/III	Pre/Post	Prospective N=112	OS in > 5 cm
Gronchi	Epi 120 + Ifos 9	G3; ≥ 5 cm; deep	Pre/Post	Prospective N=252	In +ve Surgical margins

(*) Confirmed with long-term follow-up

Remarks in Systemic Therapy

- Co-adjuvant chemotherapy could be advisable if:
 - Localized high risk STS limbs/trunk wall
 - Full doses anthracycline+ifosfamide
 - Individualizing decision-making process
- Neo-adjuvant chemotherapy better than adjuvant:
 - If can be anticipated R1 margins
 - More prognostic information (Radiological and Molecular)
 - We need to gain more knowledge (prospective clinical trials)

THANK YOU

jmartin@mustbesevilla.org