Manipulating the immune system in GI cancer

Pr Benoit Van Den Eynde, MD, PhD,
Ludwig Cancer Research, Brussels & Oxford de Duve Institute
Université catholique de Louvain
Brussels

ESMO-Asia, Singapore, December 21, 2015
Disclosures

- iTeos Therapeutics: co–founder and consultant
- Amgen: consultant
Pembrolizumab in treatment-refractory progressive metastatic CRC (anti-PD-1 IgG4)

P = 0.03 by log-rank test

Mismatch repair-deficient
Mismatch repair-proficient

No. at Risk
Mismatch repair-deficient 11 9 7 5 1 1 0
Mismatch repair-proficient 21 12 5 1 1 0

Le et al. - 2015 - NEJM
Antigens recognized by CD8 T cells on the surface of tumor cells

Cytolytic T lymphocytes (CTL) recognize on the surface of target cells **peptides** presented by **HLA class I** molecules (HLA-A, B, C).
Five classes of tumor antigens recognized by CD8 T cells:

<table>
<thead>
<tr>
<th>Antigen class</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutations</td>
<td>tumor-specific</td>
<td>individual</td>
</tr>
<tr>
<td>MAGE-type</td>
<td>tumor-specific (some exceptions)</td>
<td>tolerance ?</td>
</tr>
<tr>
<td></td>
<td>shared</td>
<td></td>
</tr>
<tr>
<td>viruses</td>
<td>tumor-specific</td>
<td>only some tumor types</td>
</tr>
<tr>
<td></td>
<td>shared</td>
<td></td>
</tr>
<tr>
<td>differentiation</td>
<td>shared</td>
<td>on normal cells (> autoimmunity)</td>
</tr>
<tr>
<td>overexpression</td>
<td>shared</td>
<td>on normal cells (> autoimmunity)</td>
</tr>
</tbody>
</table>

Coulie, Van den Eynde, van der Bruggen, Boon - 2014 - Nat Rev Cancer
Classes of tumor antigens recognized by CD8 T cells

- ‘mutated’ antigens (neoepitopes)
- MAGE-type antigens
- viral antigens
- differentiation antigens (melanoma, B cells)
- overexpressed antigens

Genetic process:
- Mutation
- Tumor-specific gene expression
- Oncogenic virus
- Tissue-specific gene expression
- Gene overexpression

- Tumor cells
- Normal cells

- All normal cells
- Other normal cells
- Spermatocytes spermatogonia trophoblast
- All normal cells
- Melanocytes
- Other normal cells
- All normal cells
Only *some* tumor antigens recognized by T cells are tumor-specific.

<table>
<thead>
<tr>
<th>Antigen class</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutations</td>
<td>tumor-specific</td>
<td>individual</td>
</tr>
<tr>
<td>MAGE-type</td>
<td>tumor-specific (some exceptions)</td>
<td>tolerance ?</td>
</tr>
<tr>
<td>viruses</td>
<td>tumor-specific shared</td>
<td>only some tumor types</td>
</tr>
<tr>
<td>differentiation</td>
<td>shared</td>
<td>on normal cells (> autoimmunity)</td>
</tr>
<tr>
<td>overexpression</td>
<td>shared</td>
<td>on normal cells (> autoimmunity)</td>
</tr>
</tbody>
</table>

Coulie, Van dan Eynde, van der Bruggen, Boon - 2014 - Nat Rev Cancer
Cancer immunotherapy: 3 main modalities

- Therapeutic vaccine
- Adoptive transfer of anti-tumor T lymphocytes
- Immunostimulating antibodies (anti-CTLA4, anti-PD1)

In patients: weak «spontaneous» activity of anti-tumor T lymphocytes
Two signals required for T cell priming

T lymphocyte (naive) → Lymph node → Tumor

TCR + CD28

- proliferation
- differentiation

Lymph node

Tumor
CTLA-4 surface expression 4-48h following T-cell activation
CTLA-4 is a physiological brake during T-cell activation

Affinity of CTLA-4 for B7: 30-fold higher than that of CD28

TCR

B7

CD28

Affinity of CTLA-4-4 for B7: 30-fold higher than that of CD28

T lymphocyte

‘naive’

professional antigen-presenting cell
(dendritic cell)

TCR

B7

CD28

CTLA-4

CD28

‘antigen experienced’

target cell
(tumor cell)
Immunostimulatory activity of anti-CTLA-4 antibodies

Anti-CTLA-4 antibody that blocks the binding to B7 (ipilimumab)

1. **T lymphocyte**
 - TCR
 - CD28
 - 'naive'

2. **Professional antigen-presenting cell** (dendritic cell)
 - TCR
 - CD28
 - B7
 - antigen
 - ++
 - +
 - +++

3. **Target cell** (tumor cell)
 - TCR
 - CD28
 - B7
 - antigen
 - +
 - ++

4. **'Antigen experienced'**
 - TCR
 - CD28
 - B7
 - antigen
 - ++
PD-1 expressed on activated effector T-cells

T lymphocyte (naive) → Priming (first activation) → Effector function (subsequent activations)

professional antigen-presenting cell (dendritic cell) vs target cell (tumor cell)

TCR + B7

CD28

CTLA-4

PD-1

++

+++:

+:

-:

++:

++:

‘naive’ vs ‘antigen experienced’
PD-1 dampens T cell activation

T lymphocyte

'naive'

professional antigen-presenting cell (dendritic cell)

CD28

TCR

B7

antigen

++

+++ +

CD28

CTLA-4

target cell (tumor cell)

PD-L1

PD-1

TCR

antigen

++

++

Dampens T cell activation
PD-1 dampens T cell activation

- Anti-PD1 (or anti-PDL1) antibody that blocks the PD1/PDL1 interaction
 - Anti-PD1: nivolumab, pembrolizumab
 - Anti-PDL1: BMS-936559

Diagram Description

- **T lymphocyte**
 - TCR
 - CD28
 - 'naive'

- **Professional antigen-presenting cell (dendritic cell)**
 - TCR
 - CD28
 - B7
 - Antigen
 - '++'
 - '+++'

- **Target cell (tumor cell)**
 - TCR
 - CD28
 - CTLA-4
 - PD-1
 - Antigen
 - PD-L1
 - '++'
 - '+'

- **Antigen Exposed T Cell**
 - TCR
 - Antigen
 - CD28
 - '++'
 - '+'

- **Regulatory Factors**
 - PD-1 dampens T cell activation
 - Anti-PD1 (or anti-PDL1) antibodies block PD1/PDL1 interaction

- **Antigen Exposed T Cell:**
 - Anti-PD1 or anti-PDL1 antibodies
 - BMS-936559

Clinical success of immunotherapy in metastatic melanoma: 23% patients are still alive 5 years after ipilimumab (anti-CTLA4)

- long-term responses in a fraction of patients
- autoimmune toxicity, particularly with combos (anti-CTL4 + anti-PD1)

Initial results with immunostimulatory antibodies in GI tumors

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Antibody</th>
<th>Refractory Tumor Type</th>
<th>Patients</th>
<th>RR</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLA-4</td>
<td>Tremelimumab</td>
<td>refractory CRC</td>
<td>49</td>
<td>2%</td>
<td>Chung et al - 2010 - JCO</td>
</tr>
<tr>
<td>PD-1</td>
<td>Nivolumab</td>
<td>refractory CRC</td>
<td>19</td>
<td>0%</td>
<td>Topalian et al - 2012 - NEJM</td>
</tr>
<tr>
<td>PD-L1</td>
<td>BMS-936559</td>
<td>refractory CRC</td>
<td>18</td>
<td>0%</td>
<td>Brahmer et al - 2012 - NEJM</td>
</tr>
<tr>
<td>PD-1</td>
<td>Pembrolizumab</td>
<td>advanced gastric cancer</td>
<td>39</td>
<td>22%</td>
<td>Muro et al - 2015 - ASCO</td>
</tr>
</tbody>
</table>
Initial results with immunostimulatory antibodies in GI tumors

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Drug Name</th>
<th>Tumor Type</th>
<th>Patients</th>
<th>RR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTLA-4</td>
<td>Tremelimumab</td>
<td>refractory CRC</td>
<td>49</td>
<td>2%</td>
<td>Chung et al - 2010 - JCO</td>
</tr>
<tr>
<td>PD-1</td>
<td>Nivolumab</td>
<td>refractory CRC</td>
<td>19</td>
<td>0%</td>
<td>Topalian et al - 2012 - NEJM</td>
</tr>
<tr>
<td>PD-L1</td>
<td>BMS-936559</td>
<td>refractory CRC</td>
<td>18</td>
<td>0%</td>
<td>Brahmer et al - 2012 - NEJM</td>
</tr>
<tr>
<td>PD-1</td>
<td>Pembrolizumab</td>
<td>advanced gastric cancer</td>
<td>39</td>
<td>22%</td>
<td>Muro et al - 2015 - ASCO</td>
</tr>
</tbody>
</table>

One patient with a complete response, ongoing at 3 years: MSI-H

Lipson et al - 2013 - Clin Cancer Res
Pembrolizumab in treatment-refractory progressive metastatic cancer (anti-PD-1 IgG4)
Pembrolizumab in treatment-refractory progressive metastatic CRC (anti-PD-1 IgG4)

P = 0.03 by log-rank test

Mismatch repair-deficient
Mismatch repair-proficient

No. at Risk
Mismatch repair-deficient 11 9 7 5 1 0
Mismatch repair-proficient 21 12 5 1 1 0

Le et al. - 2015 - NEJM
Only *some* tumor antigens recognized by T cells are tumor-specific.

<table>
<thead>
<tr>
<th>Antigen class</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutations</td>
<td>tumor-specific</td>
<td>individual</td>
</tr>
<tr>
<td>MAGE-type</td>
<td>tumor-specific (some exceptions) shared</td>
<td>tolerance ?</td>
</tr>
<tr>
<td>viruses</td>
<td>tumor-specific shared</td>
<td>only some tumor types</td>
</tr>
<tr>
<td>differentiation</td>
<td>shared</td>
<td>on normal cells (> autoimmune)</td>
</tr>
<tr>
<td>overexpression</td>
<td>shared</td>
<td>on normal cells (> autoimmune)</td>
</tr>
</tbody>
</table>
Antigens resulting from mutations (single nucleotide variations)

Non-Synonymous mutations per tumor (median ± one quartile)

<table>
<thead>
<tr>
<th>Mutagens</th>
<th>Adult solid tumor</th>
<th>Liquid</th>
<th>Pediatric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorectal (MSI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung (SCLC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung (NSCLC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal (ESCC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colorectal (MSS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and Neck</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal (EAC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastric</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrial (endometrioid)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pancreatic adenocarcinoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovarian (high-grade serous)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatocellular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endometrial (serous)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung (never smoked NSCLC)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute myeloid leukemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute lymphoblastic leukemia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medulloblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhabdoid</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

adapted from Vogelstein et al. 2013 Science 339:1546
Mutational landscape of melanomas according to clinical benefit from ipilimumab treatment

Snyder et al. 2014 NEJM

Discovery Set
- Long-term benefit
- Minimal or no benefit

Validation Set
- Long-term benefit
- Minimal or no benefit

P = 0.009 by Mann–Whitney test

P = 0.01 by Mann–Whitney test
Nonsynonymous mutation burden in NSCLC treated with anti-PD1

Discovery Cohort

- Durable Clinical Benefit (n=7)
- No Durable Benefit (n=9)

Mann-Whitney $P = 0.02$

Validation Cohort

- Durable Clinical Benefit (n=7)
- No Durable Benefit (n=8)

Mann-Whitney $P = 0.04$

Rizvi et al. 2014 Science
Immunotherapy for GI tumors: towards improvements

1. Combinations of several immunostimulatory antibodies
 probl: autoimmune toxicity!

2. Understanding and counteracting tumor resistance
 blocking local immunosuppression + immunostimulatory antibodies
 - IDO inhibitor
 - Treg inhibitor
 - Microbiota
 - ...

3. Trigger anti-tumor immune responses in « cold » tumors (non-MSI)
 - vaccines + immunostimulatory antibodies
 - individual mutated antigens (long peptides, RNA, viral vectors, ...)
 - MAGE-type antigens
 - viral antigens
 - chemo ± radiotherapy + immunostimulatory antibodies
CD28

B7

HLA + peptide

T lymphocyte

CTLA-4

CD28

TCR

signal 1

PD-1

costimulatory receptor

inhibitory receptors

B7-2

B7-1

HLA + peptide

PD-L1

PD-L2

antigen presenting cell
Immunotherapy for GI tumors: towards improvements

1. Combinations of several immunostimulatory antibodies
 probl: autoimmune toxicity!

2. Understanding and counteracting tumor resistance
 blocking local immunosuppression + immunostimulatory antibodies
 - IDO inhibitor
 - Treg inhibitor
 - Microbiota
 - ...

3. Trigger anti-tumor immune responses in «cold» tumors (non-MSI)
 - vaccines + immunostimulatory antibodies
 - individual mutated antigens (long peptides, RNA, viral vectors, …)
 - MAGE-type antigens
 - viral antigens
 - chemo ± radiotherapy + immunostimulatory antibodies
IDO1 protein expression (IHC) in human tumors (mAb 4.16H1)

(IDO: indoleamine dioxygenase)

Theate et al - 2015 - Cancer Immunol Res
Cervical carcinoma

IDO1 protein expression (IHC) in human tumors (mAb 4.16H1)

Gastric carcinoma
Anti-tumor vaccine (P1A)

P815B

P815B-IDO clone 7

control

+ 1-methyl-L-tryptophan in the drinking water (20mg/day)

Mean tumor volume (mm³ ± SEM)

P815B-IDO clone 7

+ 1-methyl-L-tryptophan

P815B clone 1

Uyttenhove et al, 2003, Nat Med, 9, 1269-74
Colon carcinoma model CT26

subcutaneous inoculation (5 x 10^5 cells)
oral treatment with IDO inhibitor MMG-0358 (1mM in the drinking water)
starting day 3 (palpable tumor)
Colon carcinoma model CT26

subcutaneous inoculation (5 x 10^5 cells)
oral treatment with IDO inhibitor MMG-0358 (1mM in the drinking water) starting day 3 (palpable tumor)

![Graph showing tumor volume over time for different treatments: control, IDO inhibitor, anti-CTLA4, and anti-CTLA4 + IDO inhibitor. The graph includes data points for days 0 to 40.]
Immunotherapy for GI tumors: towards improvements

1. Combinations of several immunostimulatory antibodies
 probl: autoimmune toxicity!

2. Understanding and counteracting tumor resistance
 blocking local immunosuppression + immunostimulatory antibodies
 - IDO inhibitor
 - Treg inhibitor
 - Microbiota
 ...

3. Trigger anti-tumor immune responses in «cold» tumors (non-MSI)
 - vaccines + immunostimulatory antibodies
 - individual mutated antigens (long peptides, RNA, viral vectors, …)
 - MAGE-type antigens
 - viral antigens
 - chemo ± radiotherapy + immunostimulatory antibodies
Joana Abi Habib
Marine Blackman
Etienne De Plaen
Stefania Cane
Rui Cheng
Violette Ferrari
Veronica Finisguerra
Marc Hennequart
Delia Hoffmann
Simon Klaessens
Juliette Lamy
Wenbin Ma
Luc Pilotte
Céline Powis de Tenbossche
Florence Schramme
Marie Solvay
Vincent Stroobant
Catherine Uyttenhove
Nathalie Vigneron
JingJing Zhu

Brussels
Ludwig Institute for Cancer Research,
de Duve Institute,
Université catholique de Louvain