Immunotherapy for gynecological cancers: Challenges and opportunities

Junzo Hamanshi

Dept. of Gynecology and Obstetrics
Kyoto University, Japan

ESMO Asia 2015
Precision medicine and developmental therapeutics in gynaecologic oncology
Special Symposium
Disclosure

• I am principal investigator of clinical trial with nivolumab sponsored by Ono Pharmaceutical company, Japan.

• I receive a research fund from Daiichisankyo, Japan (outside the presenting work)
Cancer Immune Escape

Tumor microenvironment

Escape

Immune cells

Cancer

antigen↓, MHC↓, TGFβ, IDO, PD-L1↑, Treg • iDC

PD-L1/PD-L2 expression
COX1 /COX2 expression
NKG2D-Ligands deletion
Immune-gene therapy for ovca model
Immunological clustering in ovca patients

(Hamanishi, et al. PNAS 2007)
(Liu/Hamanishi, et al. Mod Pathol 2009)
(Li/Hamanishi, et al. Can Imm Imm 2009)
(Hamanishi et al. Stem Cells 2010)
(Hamanishi et al. Clin Immunol 2011)
T cell inactivation

Cancer cell

PD-L1 (PD-1 ligand 1)
- Negative co-signaling protein; B7 family
- Is expressed on dendritic cells, heart, placenta and cancer cells

PD-1 (Programmed cell death -1)
- Negative co-signaling receptor
- Is discovered by Honjo. T (1992)
- Is expressed on active T cells and myeloid cells
- Induces peripheral immuno-tolerance

PD-1 signal induces cancer immune escape
PD-1 signal blocking is a target for OvCa?

Cancer Cell

PD-L1 (PD-1 ligand 1)

- **PD-L1 low**
- **PD-L1 high**

48/70 (68%)

(Hamaishi et al. PNAS 2007)

anti-PD-1 antibody (Nivolumab)

PD-1 signal blocking may be a new treatment for OvCa
Nivolumab (ONO-4538/BMS-936558)

- Fully human IgG4 PD-1 blocking antibody
- Binding to PD-1 and inhibiting PD-1/PD-L1 pathway
- Clinical anti-tumor effect on melanoma, kidney cancer and lung cancer

Drugs and safety data were provided by Ono.Japan and BMY in USA.
Platinum-resistant OvCa, n=20

Endpoints

- **primary**: Response rate (best response rate)
- **secondary**: Safety, PFS, OS, DCR

Nivolumab
1mg/kg n=10
3mg/kg n=10

CT

1 course

2~ 6 courses

- **Disease progression**
- **CR, PR, SD**
- **Off study**
- **Follow up**

Anti-tumor response: RECIST v1.1.
Adverse effect: CTCAE v4.0.
Clinical Effect: Best Overall Response

<table>
<thead>
<tr>
<th>Dose</th>
<th>total (n)</th>
<th>CR</th>
<th>PR</th>
<th>SD</th>
<th>PD</th>
<th>NE</th>
<th>RR</th>
<th>DCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mg/kg</td>
<td>10</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>1/10 (10%)</td>
<td>5/10 (50%)</td>
</tr>
<tr>
<td>3 mg/kg</td>
<td>10</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2/10 (20%)</td>
<td>4/10 (40%)</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>10</td>
<td>1</td>
<td>3/20 (15%)</td>
<td>9/20 (45%)</td>
</tr>
</tbody>
</table>

Response rate is 20% in 3 mg/kg cohort

Hamanishi et al. JCO 2015
Two patients with Complete response

① 59yo. Serous adenoca. Multi-Pelvic LN recurrence (Nivo. 3mg/kg)

Baseline 4 months

② 60yo. Clear cell. Peritoneal dissemination recurrence (Nivo. 3mg/kg)
Survival Analysis

1mg/kg

3.5 months

PFS (%)

(month)

3mg/kg

3.0 months

(month)

Total

3.5 months

(month)

cf. 2nd line Chemo: PFS=3.5Ms, OS=12Ms

Hamanishi et al. JCO 2015
Follow-up Study (on going)

Change in target lesions from baseline (%)

Nivolumab One Year-Treatment

No Treatment >12 months

Durable response after Nivolumab-treatment

Hamanishi et al. ASCO 2015
PD-L1 expression and anti-tumor response

PD-L1 is not correlated to anti-tumor response??

(Hamanishi et al. JCO 2015)
Nivolumab is well tolerated for OvCa patients

- Total RR was 15%
- 3 mg/kg (RR=20%*) is favorable than 1 mg/kg

<table>
<thead>
<tr>
<th>Nivolumab</th>
<th>Melanoma</th>
<th>Renal cancer</th>
<th>Lung cancer</th>
<th>Ovarian cancer*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response Rate</td>
<td>19-41 % (28 %)</td>
<td>24-37% (27%)</td>
<td>6-32 % (18 %)</td>
<td>10-20%* (15%)</td>
</tr>
</tbody>
</table>

(Topalian NEJM 2012)
Our Next Goal

- Additional indication of Nivolumab for OvCa

Phase IIa (Kyoto Univ.)
Phase IIb (Multi-institute)

larger-scaled
• Additional indication of Nivolumab for OvCa

⇒ Next larger-scale clinical trial for OvCa starts.

• Biomarker exploration for efficacy and safety

 • Anti-tumor effect
 • Side effect
 • Minimal treatment period

OMICS (DNA, RNA, Protein)

Clinical samples from 20 Patients (tumor, blood)
Our Next Goal

• Additional indication of Nivolumab for OvCa

⇒ Next larger-scale clinical trial for OvCa starts.

• Biomarker exploration for efficacy and safety

⇒ PD-L1 is a biomarker of Nivolumab for OvCa...?
⇒ Other reverse translational research is needed

• Overcome Nivolumab-resistance cases

⇒ Combination: vaccine, molecular target or chemotherapy?
⇒ New immuno-suppressive factors?
Chemo-immunotherapy with aPD-1 Ab in mouse ovarian cancer model

Mouse ovarian cancer cell line ID8 model

In the experiment, C57/Bl6 mice were injected subcutaneously with ID8 cells on day 0. Treatment with PBS (Paclitaxel) + IgG or aPD-1 Ab or aPD-L1 Ab started on day 14 and continued every 4 days until day 150.

The survival rate of the mice was evaluated, showing a significant improvement in survival for the mice treated with PTX + aPD-1 Ab compared to the control group.

Peng, Hamanishi et al. Cancer Res. in press
New B7-Hx expression on gynecologic malignancies

Murat, Hamanishi et al. submitted
PD-1 signal and Gynecologic Cancers

Ovarian Cancer
- PD-L1\(\alpha\)poor prognosis (Hamnishi PNAS2007)
- PD-1+TIL\(\alpha\)poor prognosis (Matsuzaki PNAS 2010)
- BRACA-/- \(\alpha\)PD-L1exp. (Strickland ASCO2015) etc.
- Nivo, Pembro, Avel and Durav

Endometrial Cancer
- PD-L1exp. (Vanderstraeten CCI 2014)
- MSI\(\alpha\)PD-L1exp. (Howitt ASCO 2015)
- Pembrolizumab (pII) (NCT02549209)

Cervical Cancer
- PD-1+TIL\(\alpha\)poor prognosis (Karim CCR 2009)
- Nivoluamb (pII) by NCI (NCT02257528)

Vulval/Vaginal Cancer (melanoma)
- Nivoluamb or Pembrolizumab
The view of PD-1 inhibitors for gynecologic cancer

Vulva/Vaginal Cancer (Melanoma) → Nivo and/or Pembro

Cervical Cancer → Nivolumab (pII)

Nivolumab (pII)
Kyoto Univ. JPN

Pembrolizumab (pII)

Pembro + TC (pII)
Pembro + ddT (pII)
Pembro + TKI (pII)

Endometrial Cancer → Pembro + TC (pII)

RR=12%(3/26)

2012 2014 2015 2016 ?

BMS-936559(pI)

Averumab (pI)

RR=11%(8/75)

Atezolizumab + Ipi (pl)
Durvalumab + Treme (pl)
Durvalumab + PARPi (pl/II)

Averumab + PLD (pIII)

Anti-PD-L1 antibody

Anti-PD-1 antibody

Hamanishi et al. in submission

2012

2014

2015

2016 ?
The role of PD-1 inhibitors

Operation/Biopsy

Diagnosis

Sampling

Medication

Chemotherapy

Molecular Target

Radiation

Immunotherapy

Biomarker

Diagnosis/Classification

Mutanome

Immune Monitoring

Biomarker

Medical Expense

Side effect

Gender? Onco-fertility?

Value = \frac{Benefit}{Cost + Toxicity}

*TR: translational research

**rTR: reverse translational research

§ Saltz et al. ASCO2015

Hamanishi et al. in submission
New types of cancer immunotherapies are attractive and some ones are hopeful as next anti-tumor strategy for gynecologic malignancies.

PD-1 inhibitors have potential benefit not only for ovarian cancer, but also for other gynecologic tumors.

The key to further development of PD-1 inhibitors is - to find predictive biomarkers for antitumor effects, - to investigate good combination treatments and - to consider the benefit, cost and toxicity.
Research group

Kyoto Univ. Gynecologic Oncology
Ikuo Konishi
Noriomi Matsumura
Tsukasa Baba
Junzo Hamanishi
Ken Yamaguchi
Kaoru Abiko
Naoki Horikawa, Jin Peng
Akihiko Ueda, Yuko Hosoe

iACT
Akira Shimizu T akafumi Ikeda
Satoshi Morita Atsushi Kawaguchi
Masayuki Yokode Manabu Minami
Toshinori Murayama

Immunology and Cell Biological
Nagahiro Minato

Immunology and Genome Medicine
Tasuku Honjo
Shunsuke Chikuma

Medical Oncology
Shigemi Matsumoto
Masashi Kanai
Yukiko Mori

Kinki Univ.
Masaki Mandai

Tokushima Univ.
Taku Okazaki

Kitano Hospital
Shingo Fujii