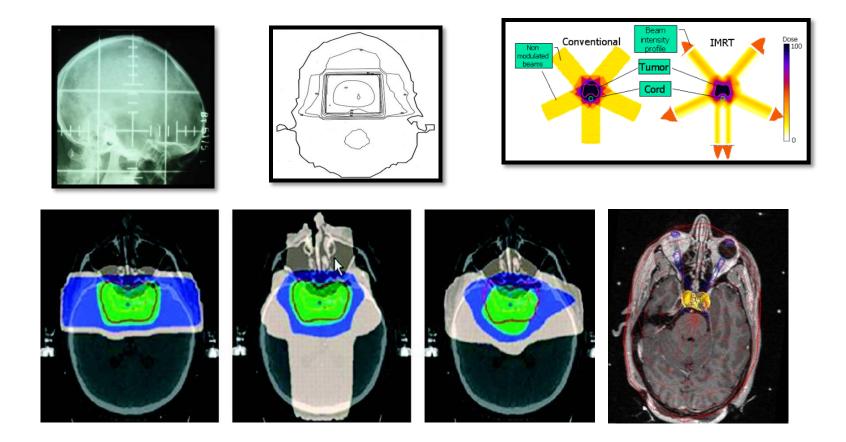
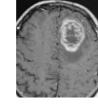


Novel tools in radiation oncology: is there any impact?



Rakesh Jalali Neuro-Oncology Group Tata Memorial Hospital Mumbai, INDIA



Era of high-precision conformal radiation therapy

Larger number of beams & intensity modulation (IMRT) result in better highdose conformality and improved organ-at-risk sparing; precisely delivered

RT+TMZ still the standard of care Landmark EORTC/NCI study

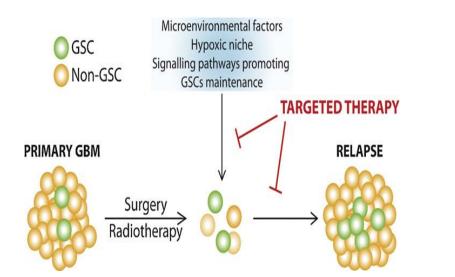
Focal conformal radiotherapy (Gross tumour+ 2-3 cm margin covering all T2 weighted abnormality) with 2-4 fields; Dose: 59.4-60 Gy/30-33#/6+ weeks

Stupp et al NEJM 2005 Stupp et al Lancet Oncol 2009

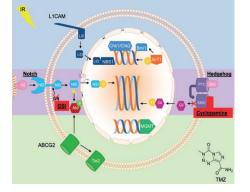
0

Phase III trials of dose escalation in high grade gliomas

Stereotactic radiosurgery (Gama Knife) or Brachytherapy


Souhami L et al IJROBP 2004

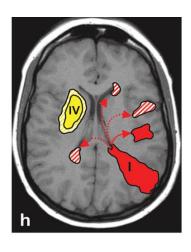
Survival Rate (%)


Laperriere NJ et al IJROBP 1998

$SRS \pm RT$ Brachytherapy \pm RT Median Median 100 -1.0 Survival Survival n n RT 70 13.5 RT 69 13.2 $\overline{}$ SRS + RT 69 0.8 80 - Brachyther.71 13.6 **Survival Probability** 13.8 60 0.6 P = .64P = .4940 0.4 20 0.2 0 0 6 12 24 30 36 0 18 20 60 80 0 40 100 Mos Mos to Death Since Surgery

Level 1 evidence : higher doses nor better

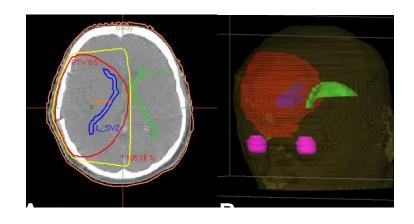
Targeting glioma stem cells



Understanding the Origins of Gliomas and Developing Novel Therapies: Cerebrospinal Fluid and Subventricular Zone Interplay

Michael Glantz* 🎍 🛎, Santosh Kesari^b, Lawrence Recht^c, Gudrun Fleischhack^d, Alexis Van Horn*

- By inducing differentiation (BMP, Wnt/Akt pathways)
- Glioma stem cell (GSC) signalling pathways
- GSC microenvironment (Perivascular and hypoxic niche)

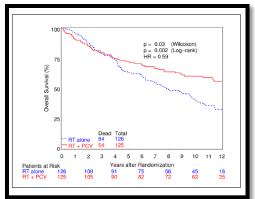


J Neurooncol DOI 10.1007/s11060-012-0887-3

CLINICAL STUDY

Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma?

Tejpal Gupta · Vimoj Nair · Siji Nojin Paul · Sadhana Kannan · Aliasgar Moiyadi · Sridhar Epari · Rakesh Jalali


Prognostic factor	HR (95%CI)	p-value	HR (95%CI)	p-value
	for PFS		for OAS	
Age	1.00 (0.94-1.07)	0.931	1.02 (0.94-1.11)	0.660
KPS (low vs high)	0.32 (0.11-0.92)	0.035	0.24 (0.08-0.73)	0.012
RPA class (good vs poor)	2.04 (1.05-5.55)	0.016	6.76 (1.62-28.7)	0.009
Mean ipsilateral SVZ dose	0.91 (0.80-1.03)	0.116	0.87 (0.77-0.98)	0.025
Mean contralateral SVZ dose	0.96 (0.71-1.30)	0.797	0.95 (0.71-1.25)	0.695

A prospective study ongoing to evaluate the pattern of relapses wrt SVZ locations (n=100); accrual so far: 71

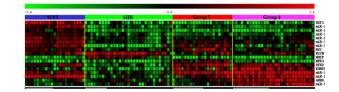
Low-grade gliomas (LGGs) : Changing landscape

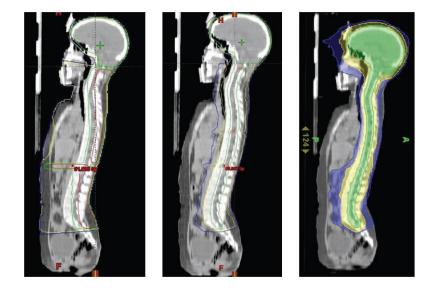
Diffuse grade II astrocytomas, oligodendrogliomas, and mixed oligo-astrocytomas are **infiltrative**, less likely to be completely resected and frequently need adjuvant Rx.

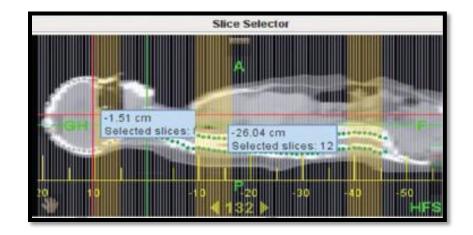
Mature results of RTOG 9802 - Overall Survival

	RT ALONE [%]	RT + PCV [%]	
MEDIAN OS	7.8 YEARS	13.3 YEARS	
5-YEAR	63.1	72.3	
10- YEAR	40.1	60.1	

Focal conformal RT (all T2 tumour) and spare as much normal brain as possible

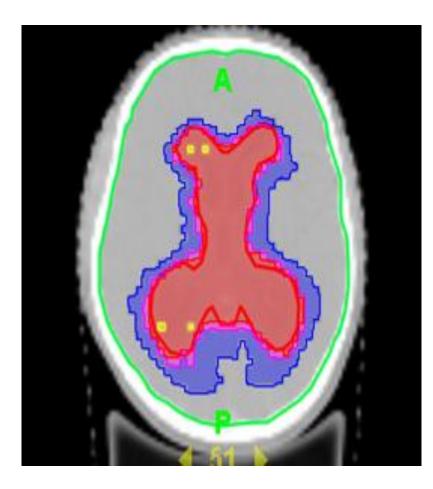

Histo	logic	classificatior	ı
	- g		

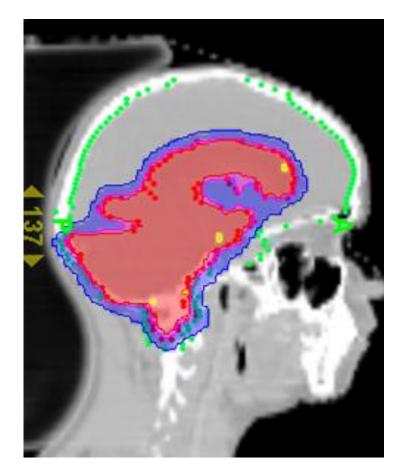

		•			
		Diffuse astrocytoma	Oligodendroglioma	"Oligoastrocytoma" or ambiguous histology	
nation	IDH-mut, 1p/19q-nondel, ATRX loss	Diffuse astrocytoma, ATRX loss of expression	Diffuse glioma* (oligodendroglioma phenotype), 1p/19q non-deleted, ATRX loss of expression	Diffuse astrocytoma, ATRX loss of expression	
ar infor	IDH-mut, 1p/19q-codel, ATRX intact	Diffuse glioma (astrocytoma phenotype), 1p/19q-codeleted	Oligodendroglioma, 1p/19q-codeleted	Oligodendroglioma, 1p/19q- codeleted	
Molecula	IDH wild type	Diffuse astrocytoma, IDH wild type*	Diffuse glioma* (oligodendroglioma phenotype), IDH wild type*	Diffuse astrocytoma, IDH wild type*	
2	Testing not performed	Diffuse astrocytoma, NOS	Oligodendroglioma, NOS	"Diffuse glioma, NOS"	


The British Journal of Radiology

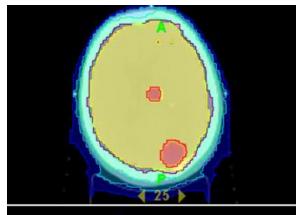
High-precision radiotherapy for craniospinal irradiation: evaluation of three-dimensional conformal radiotherapy, intensitymodulated radiation therapy and helical TomoTherapy

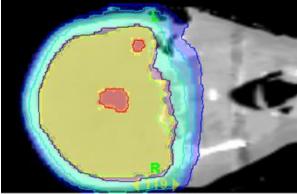
 1D S SHARMA, MSc, Diprp, 2T GUPTA, MD, 3R JALALI, MD, 2Z MASTER, MS, 2R D PHURAILATPAM, MSc, Diprp and 2R SARIN, MD, FRCR

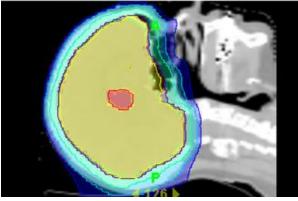


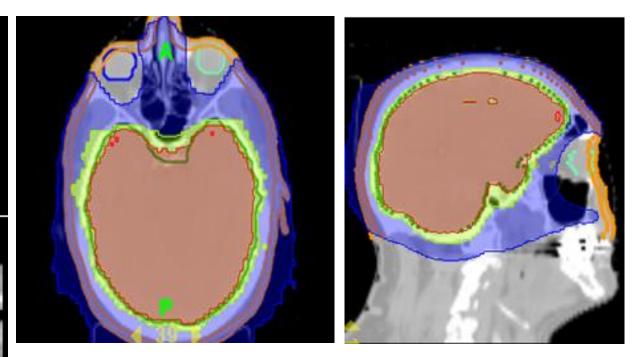

Craniospinal axis RT: critical in medulloblastoma: needs meticulous planning & execution

Potential suggested trials in WNT / SHH (favourable) pathway tumours

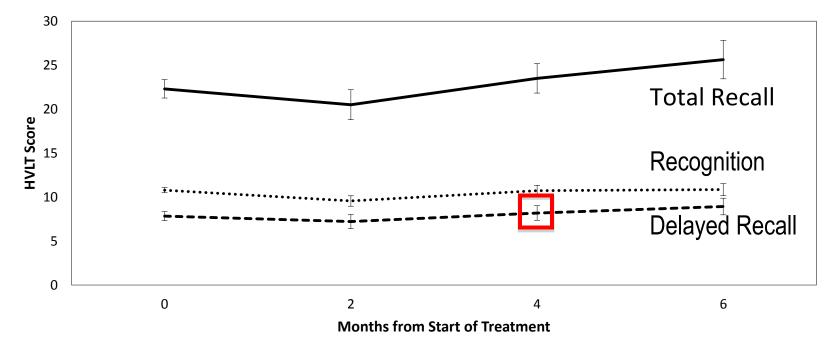

- De-escalate therapy; RT dose and chemotherapy, explore targeted therapies etc
- Delay RT as much as possible (? 5 years)T
- Localised RT only/ No CSI


Highly conformal whole ventricular irradiation in germ cell tumours





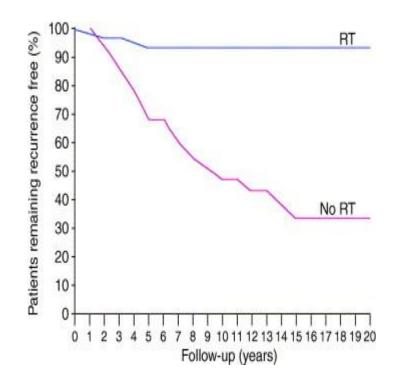
Scalp-sparing WBRT in brain metastases: SIB



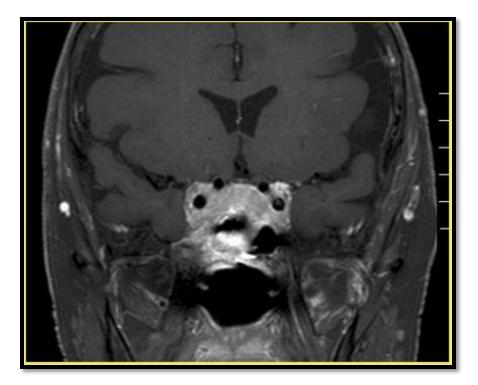
Whole Brain Dose = 30 Gy Scalp Dose = ~15 Gy

Whole Brain Dose = 30 Gy Metastatic boosts = 45 Gy Scalp Dose = ~18 Gy

Hippocampal sparing trial in brain metastasis RTOG 0933 (n=100)


- Mean relative decline in HVLT-Delayed Recall from baseline to 4 months: 7.0% (95% CI: 4.7 to 18.7%)
- Significant less than historical control: **30%** (*p*=0.0003)
- 42 patients had assessment at 4 months

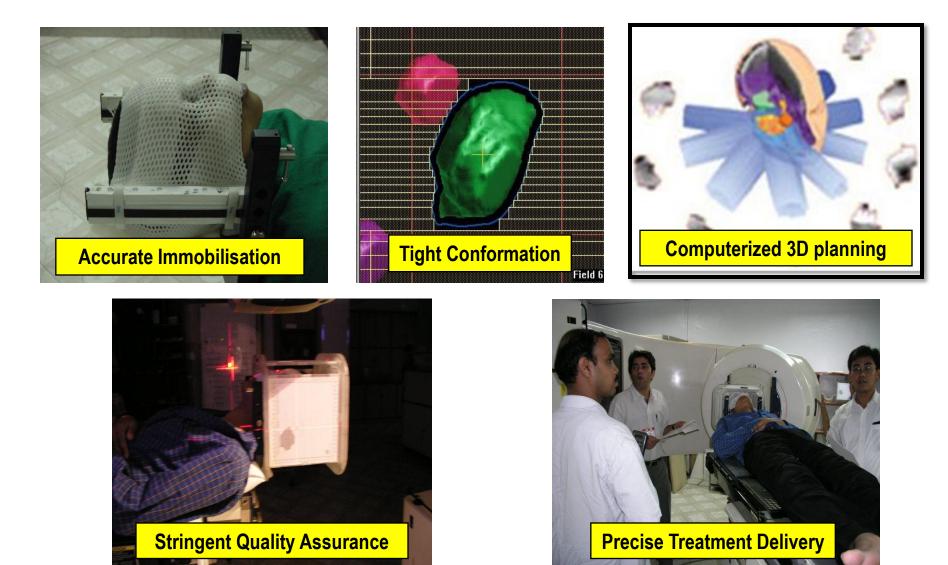
Gondi JCO 2014


Comparative study of 2 surgical institutions; same RT set up RT No RT PFS *n*=63 *n*=63 68% 5 yr 93% 93% 47% 10 yr 15 yr 93% 33%

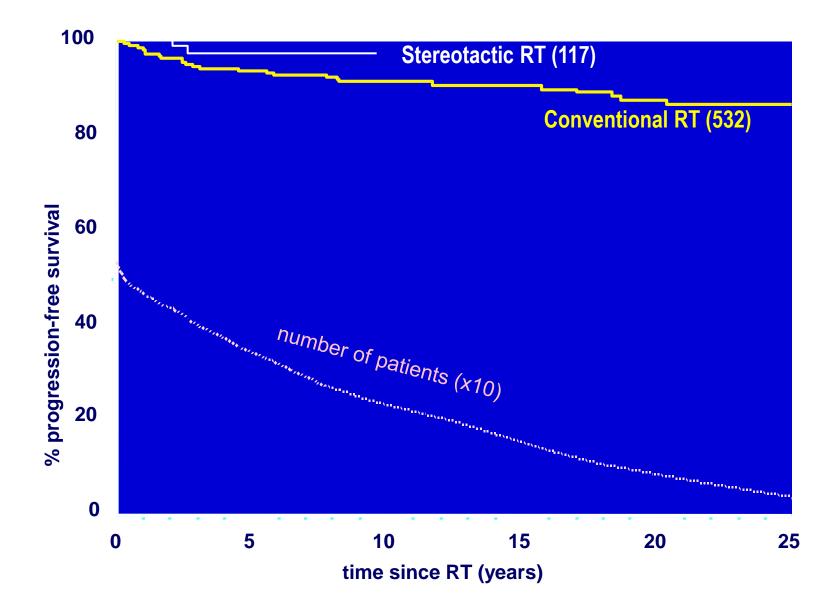

Administration of RT was the only significant factor

Gittoes Clin Endocrinol 1998

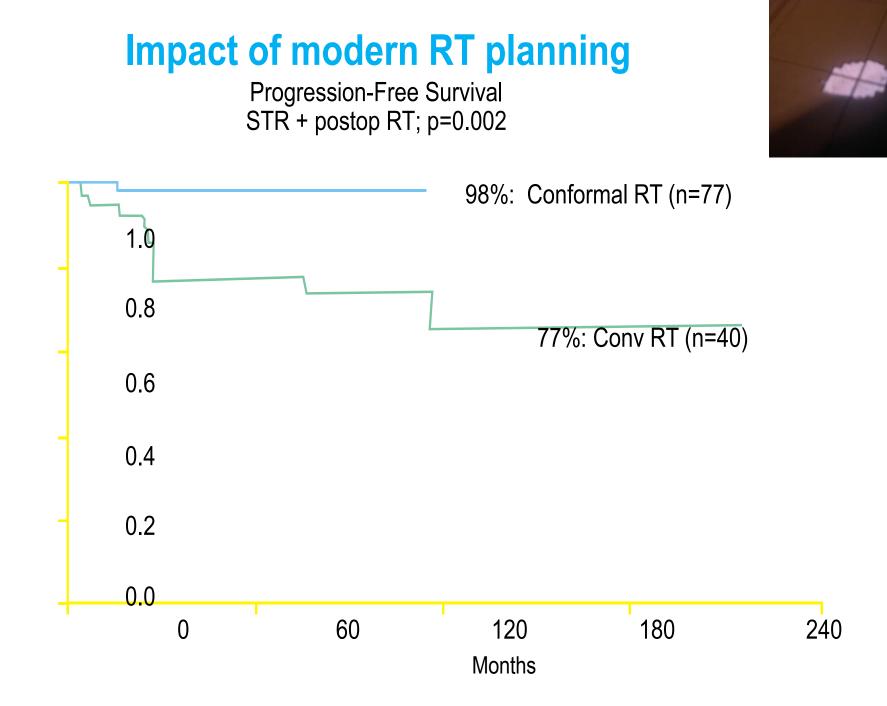
Radiotherapy Vs. Radiosurgery (SRS)



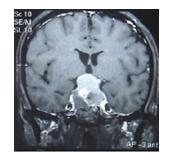
 Large OR
Touching optic nerves / chiasm

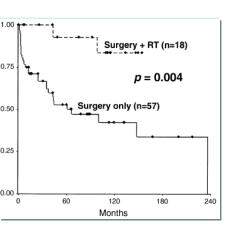

- Small AND
- ► ≥2-3 mm from optic n / chiasm
- AND well-defined

Modern Conformal RT process and workflow


Jalali et al, Clin Endocrinol 2000

Long term tumour control after RT

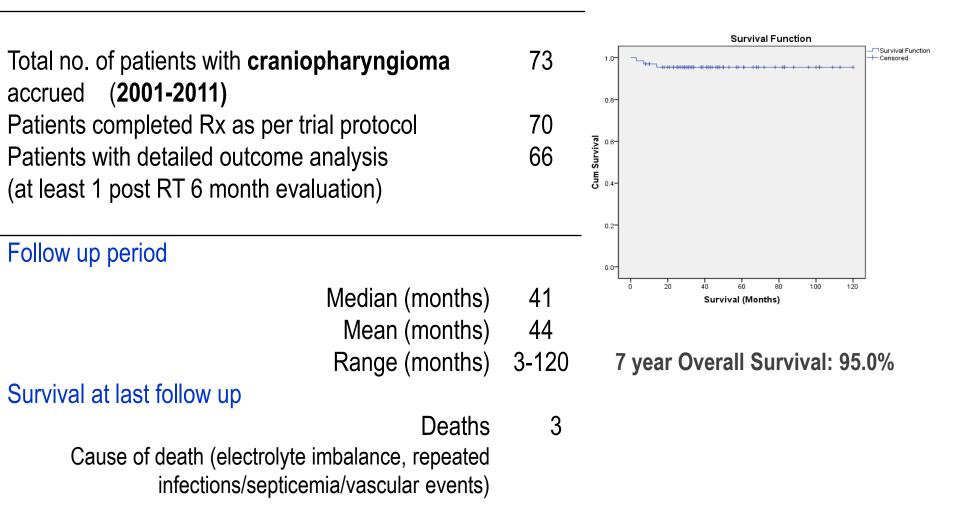



Meningioma- long term results

<u>Author (year)</u>	<u>n</u>	<u>GTR</u>	<u>STR</u>	<u>STR+ RT</u>	^a 16 atypical
Mirimanoff (1985)	225	93% (n=145)	63% (n=80)		
Taylor (1988)	132	96% (n=90)	43% (n=42)	85% (n=13)	
Glaholm (1990)	117			84%	
Miralbell (1992)	115		48% (n=79)	88% (n=17, 8yPFS)	
Mahmood (1994)	254	98% (n=183)	54% (n=65)	4/6 stable disease	
Goldsmith (1994)	117			89% (98% p1980, n=	:77)
Condra (1997)	246 ^a	95% (n=174)	83% (n=55)	86% (n=17, 5 atypica	al)
Stafford (1998)	581	88% (n=465) ^b	61% (n=116) ^c		
Nutting (1999)	82			92%	
Vendrely (1999)	156			89% (12 >WHO grad	e 1)
Debus J (2005)	153			90.5%	
	2389	88-98%	43-83%	84-98%	

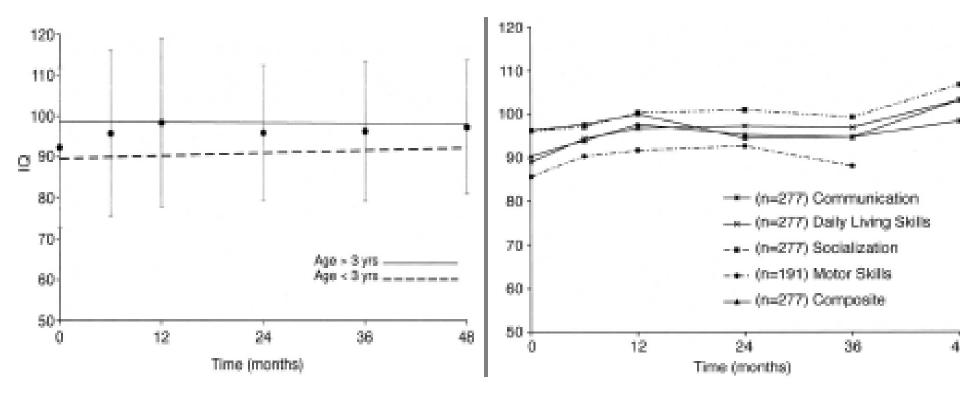
Craniopharyngioma

- 2-5% of all primary intracranial tumours
- Radical surgery: high incidence of hypothalamic damage
- Increasingly treated with conservative surgery + RT
- Good results with RT; 70-85% long term control

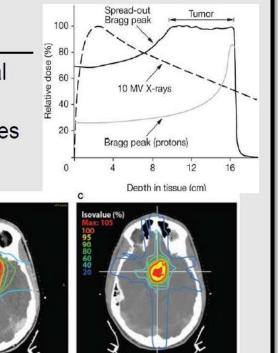

Review of 144 published data; Adamson & Yasargil 2008

Fractionated stereotactic conformal radiotherapy following conservative surgery in the control of craniopharyngiomas

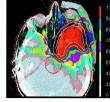
Giuseppe Minniti^{a,1}, Frank Saran^{a,b}, Daphne Traish^{a,e}, Rubin Soomal^b, Susan Sardell^a, Adam Gonsalves^a, Susan Ashley^c, Jim Warrington^d, Kevin Burke^d, Amin Mosleh-Shirazi^{b,d}, Michael Brada^{a,e,*}

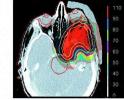

CLINICAL INVESTIGATION	Brair
FRACTIONATED STEREOTACTIC RADIOTHERAPY FOR CRANIOPHARYNGIOMAS	
Daniela Schulz-Ertner, M.D.,* Claudia Frank, M.D., [†] Klaus K. Herfarth, M.D.,	*
Bernhard Rhein, M.Sc., [‡] Michael Wannenmacher, M.D., D.D.S.,* and	
Jürgen Debus, M.D., Ph.D.* [‡]	

Prospective data with conformal RT


Prospective trial of conformal RT in children less than 3 years of age (ependymoma)

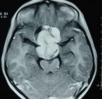
Merchant JCO 2004;22:3156-62


Protons


- Steep dose fall-off at distal edge
- Less dose to normal tissues
- Becoming more available

IMRT

• Unequivocal clinical superiority yet to be demonstrated


SRT

- May be beneficial in benign tumours, ? recurrent tumours
- Potentially counter productive in infiltrating tumours as gliomas
- QA, cost

Isovalues (%)

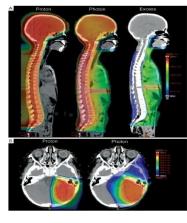
Protons

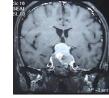
- Just not **A Proton** facility; should be spot scanning, with image guidance
- Collaborative data needed

High-precision radiotherapy for progressive/residual low grade/benign brain tumours

- Excellent long term control
- Advances in technology and increasing use of high precision techniques (Stereotactic RT, IMRT, Proton beam therapy, Tomotherapy, Cyber knife, etc)

Evaluation of efficacy of modern high-precision RT


- Physics / dosimeteric
 - Dose distributions, dose volume histograms, indices
- Clinical


Reduction of RT induced toxicity Survival

Clinical evidence is based on retrospective or relatively few prospective studies

Stereotactic **Conformal RT Vs Conventional RT** in Children and Young Adults With Low Grade and Benign Brain Tumours

Sponsor:	Tata Memorial Hospital	
Collaborator:	Terry Fox Foundation	
Information provided by:	Tata Memorial Hospital	
ClinicalTrials.gov :	NCT00517959	

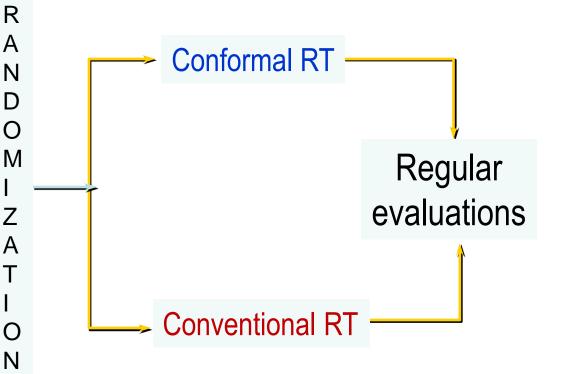
Primary endpoint

Incidence and magnitude of neuropsychological, cognitive, neuroendocrine and neurological dysfunction in the two arms

Secondary endpoint

Survival

- **Sample size**: N=200; 80% power to detect a 15-20% reduction in primary endpoints in Conformal RT arm compared to conventional RT arm at a significant level of p<0.05
 - Informed consent (English, Hindi, Marathi)


Trial schema

Т

- Age 3-25 years
- Residual/progressive low grade and benign tumours needing RT
- Informed consent
- Detailed neurological endocrine and neuropsychological evaluation

Stratification

- Pre vs. post pubertal
- NPS 0-1 vs. 2-3
- Hydrocephalus nil/mild vs. moderate/severe

IRB Clearance: May 2001 Accrual: 2001 - 2011

RT techniques in the two arms

	High precision Conformal RT	Conventional RT	
Immobilisation	BrainLAB stereotactic mask	Thermoplastic mask	
Imaging datasets	CT + MRI (3D-FSPGR/T2 FLAIR)	CT simulation	
Volume delineation	CTV= Residual tumour/ tumour bed GTV+3-5mm	CTV=Residual tumour/ tumour bed GTV+3-5mm	
Safety margin or Planning target volume (PTV)	2mm ; RT delivery under stereotactic guidance	5 mm	
Beam planning	microMLC based Conformal, non coplanar 6-9 beams	2-3 coplanar beams, appropriate wedges and shielding	
Dose/fractionation	54 Gy/ 30 #/ 6 weeks	54 Gy/ 30 #/ 6 weeks	

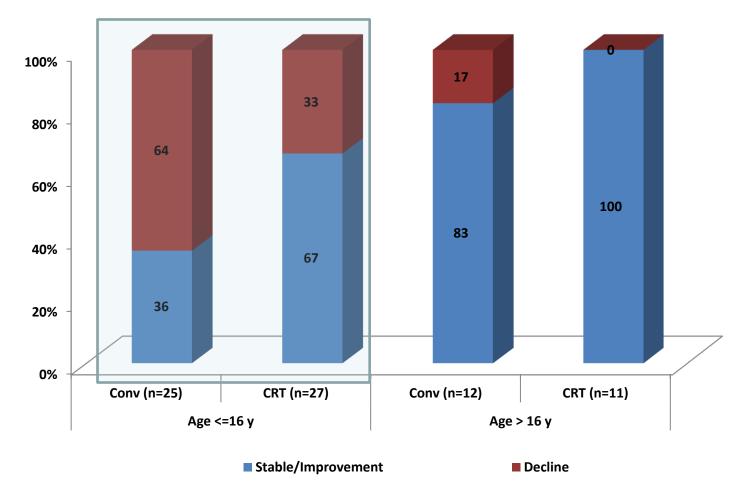
Patient demographic profile (n=200)

Characteristics		CRT	Conv RT
Age median (IQR)		13yr (8-17.5)	12yr (9-17)
Gender	Male	69	64
	Female	36	31
Pathology	Cranio	39	44
	Astrocytoma	34	29
	OPG	22	15
	Ependymoma	6	6
	Others	4	1
Location	Supratentorial	82	81
	Infratentorial	23	14
Vision	Normal	98	88
	Impaired	7	7
Hydrocephalus	Mild	34	29
	Mod/Severe	71	66
NPS	0/1	79	73
	2/3	26	22
Pubertal status	Prepubertal	65	61
	Postpubertal	40	34

IQ before starting adj *Rx* in benign/low grade tumours

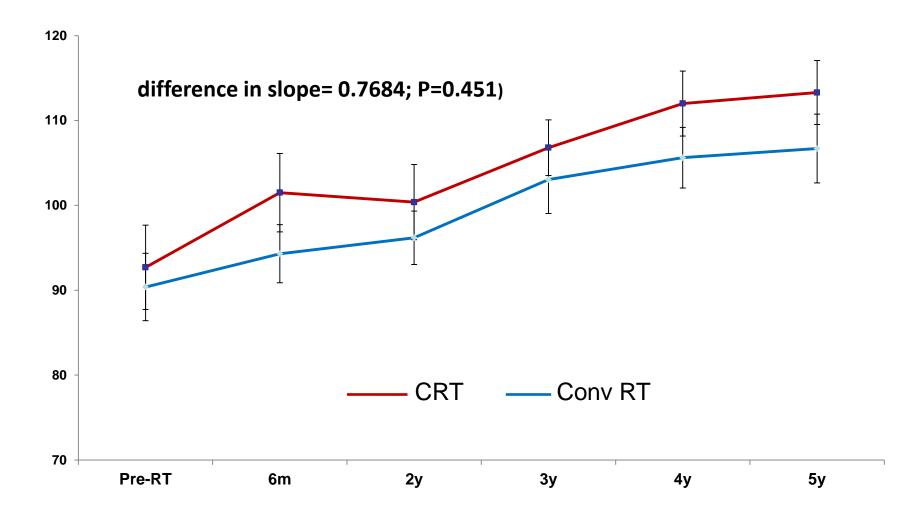
45% of pediatric patients with low grade and benign tumours in a prospective study (n=103) at had low IQ (performance IQ) baseline before starting SRT Carpentieri *et al* Neurosurg 2003

IQ patients Defective <69 12 (15.4%) 23 (29.5%) 70-79 Borderline Dull Normal 80-89 17 (21.8%) 22 (28.2%) 90-109 Average 110-119 Bright Normal 4 (5.1%) 0 (0%) Superior 120-129 Very Superior 0 (0%) >130

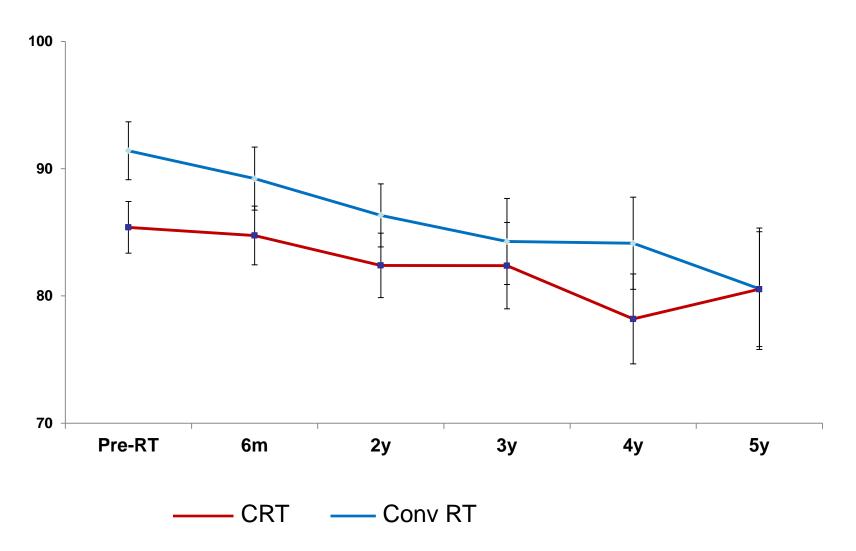

60.4% patients at pre RT baseline had below normal values (n=78)

Jalali et al IJROBP 2006, 2010

Time trends in Full scale IQ (FSIQ) Linear mixed model


Distribution of clinically significant FSIQ wrt to age

P<0.05


Reference value for clinically significant change was taken as 5 point decline/improvement (3%)

Time trends in MQ Linear mixed model

Time trends in VQ

Linear mixed model(LMM)

Int. J. Radiation Oncology Biol. Phys., Vol. 77, No. 4, pp. 974–979, 2010 Copyright © 2010 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/5–see front matter

doi:10.1016/j.ijrobp.2009.06.025

CLINICAL INVESTIGATION

Brain

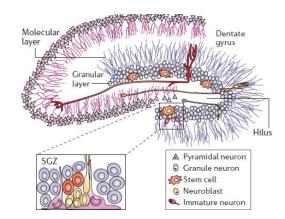
FACTORS INFLUENCING NEUROCOGNITIVE OUTCOMES IN YOUNG PATIENTS WITH BENIGN AND LOW-GRADE BRAIN TUMORS TREATED WITH STEREOTACTIC CONFORMAL RADIOTHERAPY

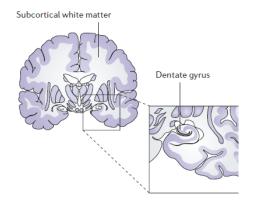
Rakesh Jalali, M.D.,* Indranil Mallick, M.D.,* Debnarayan Dutta, M.D.,* Savita Goswami, M.Sc.,[†] Tejpal Gupta, M.D.,* Anusheel Munshi, M.D.,* Deepak Deshpande, Ph.D.,[‡] and Rajiv Sarin, F.R.C.R.*

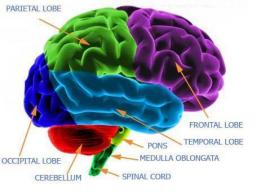
Departments of *Radiation Oncology, †Clinical Psychology, and [‡]Medical Physics, Tata Memorial Centre, Mumbai, India

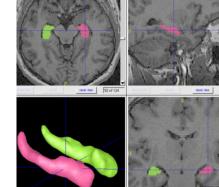
Possible dose constraint model

No IQ decline Left temporal lobe

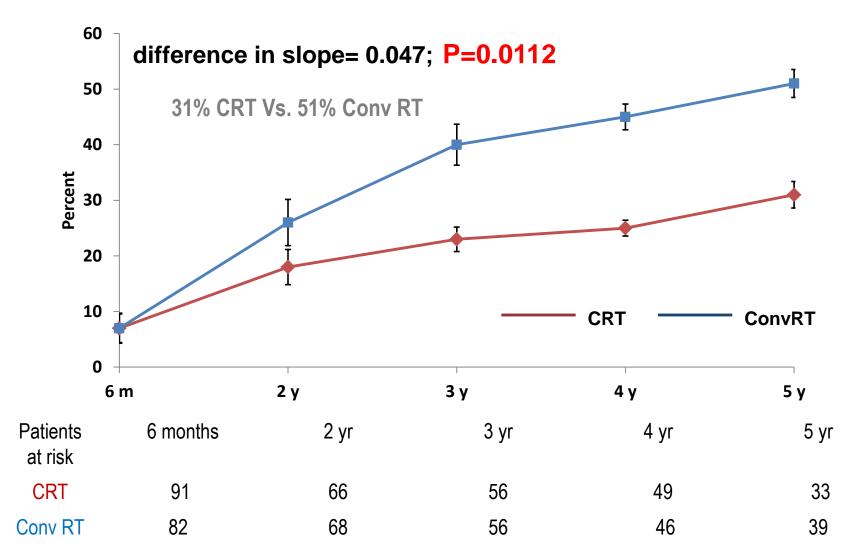

• < 13% volume receiving > 43 Gy


Ventromedial Prefrontal & Parietal Cortex:

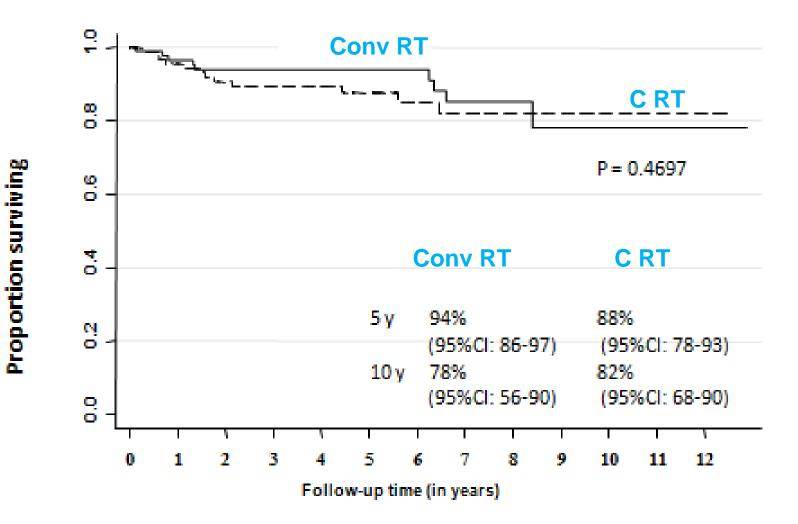

- anxiety
- irritability
- 🗖 fatigue


 Dorsolateral Prefrontal & Somatosensory Cortex:
indifference
euphoria

Left Hippocampus RT dose & IQ preservation at 5 years



Logistic regression analysis, model fit


		5 year evaluation		
		Mean dose (Gy)	p-value*	
FSIQ	>10%drop	31.0	0.040*	
	<10% drop	26.5		
VQ	>10%drop	32.0	1.00	
	<10% drop	25.6		
PQ	>10%drop	32.0	0.037*	
	<10% drop	26.0		

Mean doses ≤30 Gy as a possible dose constraint cut off for IQ decline

Cumulative incidence of new endocrine dysfunction

Overall Survival

Conclusions

- RT indicated and vital in optimal management of many CNS tumours
- Modern conformal RT spares critical areas safely

• Efficacy of conformal RT proven in a randomised controlled trial in terms of preservation of neurocognition and significantly less endocrine dysfunctions at 5 years follow up following radiotherapy; all meaningful and clinically relevant late endpoints

• Could be used as a template/corroboration for other modern evolving high precision RT techniques (including possibly particle therapy)

"Therapy should be permanently backed up by scientific research without which no progress is possible. Moreover the search for pure knowledge is one of the most important needs for mankind..."

Manja Skłodnoska Curies