Limits of Radical **Resection for** Low-and High-**Grade Gliomas** 

### Nader Sanai, MD, FAANS, FACS

Associate Professor of Neurological Surgery Director, Division of Neurosurgical Oncology Director, Barrow Brain Tumor Research Center Barrow Neurological Institute Phoenix, Arizona, USA



### Disclosures

EXTRAMURAL RESEARCH SUPPORT American Association of Neurological Surgeons American Brain Tumor Organization American Cancer Society American Society of Clinical Oncology Arizona Biomedical Research Commission National Cancer Institute National Institute of Neurological Disorders and Stroke Novartis AG The Ben & Catherine Ivy Foundation The Pivotal Foundation The Thurston Foundation

ADVISORY BOARDS Caris Life Sciences Carl Zeiss AG Medtronic, Inc. Osteomed L.P.

### **Distribution of Adult Gliomas**



All Grade II gliomas eventually become high-grade



### **Current Glioma Standards of Care**



### **Current Glioma Survival Data from the U.S.**

|           | Mean Age at<br>Diagnosis | 2-Year<br>Survival | 5-Year<br>Survival | 10-Year<br>Survival |
|-----------|--------------------------|--------------------|--------------------|---------------------|
| Grade I   | 17                       | 91%                | 88%                | 84%                 |
| Grade II  | 40                       | 55%                | 45%                | 35%                 |
| Grade III | 42                       | 40%                | 25%                | <b>20%</b>          |
| Grade IV  | 55                       | 12%                | 5%                 | 3%                  |



**Source: 2014 Central Brain Tumor Registry of U.S.** 

### **Low-Grade Gliomas: Extent of Resection**



### LGG Surgery in the Modern Literature



## The Value of Extent of Resection: Low-Grade Glioma Overall Survival

### Role of Extent of Resection in the Long-Term Outcome of Low-Grade Hemispheric Gliomas

Smith et al.

J Clin Oncol. 2008; 26(8):1338-45

Ρ

Hazard Ratio

*n* = 216

Point Estimate<sup>†</sup> 95% Cl

### EOR remained significant predictor of overall survival even if only analyzing patients with EOR $\ge$ 80%

\* Adjusted for the effects of patient age, KPS, tumor location and tumor subtype.

<sup>+</sup> Per unit of measure (e.g. log cm<sup>3</sup>, cm<sup>3</sup>, %)



## The Value of Extent of Resection: Low-Grade Glioma Transformation



#### lus et al, J. Neurosurg. 2012; 117:1039-1052

### Low-Grade Glioma Heterogeneity

|                                 | Median<br>Age at<br>Diagnosis | 2-Year<br>Survival | 5-Year<br>Survival | 10-Year<br>Survival |
|---------------------------------|-------------------------------|--------------------|--------------------|---------------------|
| Grade I<br>JPA                  | 17                            | 97%                | 94%                | 91%                 |
| Grade II<br>Astrocytoma         | 40                            | 61%                | 47%                | 35%                 |
| Grade II<br>Oligodendroglioma   | 32                            | 90%                | <b>79%</b>         | <b>64%</b>          |
| <b>Grade II</b><br>Mixed Glioma | 35                            | 75%                | 57%                | <b>46</b> %         |



**Source: 2014 Central Brain Tumor Registry of U.S.** 

## **Low-Grade Glioma Heterogeneity**

### World Health Organization (WHO) Grade I Juvenile Pilocytic Astrocytoma (JPA)

Subependymal Giant Cell Astocytoma (SEGA) Myxopapillary Ependymoma Subependymoma Dysembryoplastic Neuroepithelial (DNET) Ganglioglioma <u>Choroid Plexus P</u>apilloma

#### WHO Grade II

Diffuse Astrocytoma Oligodendroglioma Oligoastrocytoma Pleiomorphic Xanthroastrocytoma Pilomyxoid Astrocytoma Ependymoma Central Neurocytoma



### Low-Grade Glioma Heterogeneity

| Astrocytowas                                                | Olinodaudzor   | liones                          | Mixed Gligman        |         |
|-------------------------------------------------------------|----------------|---------------------------------|----------------------|---------|
| World Health Organization (V                                | WHO) Grade I   | WHO Gra                         | de II                | Jinas   |
| J <mark>B</mark> &enile Pilocytic Astrocytom <mark>a</mark> | (JPA)          | Diffuse A                       | strocytoma           |         |
| SE <mark>6A</mark> pendymal Giant Cell Ast <mark>o</mark>   | cytoma (SEGA)  | Oligoden                        | droglioma            |         |
| Myxopapillary Ependymoma                                    |                | Oligoast <mark>r</mark>         | ocytoma              |         |
| Subependymoma                                               |                | P <b>kéł</b> omo <mark>r</mark> | ohic Xanthroastro    | ocytoma |
| Dydembryoplastic Neuroepithe                                | elial (DNET)   | Pilomyxo                        | id Astrocytoma       |         |
| Ganglioglioma                                               |                | Ependym                         | ioma                 |         |
| Choroid Plexus Papilloma<br>Glioma with Ependymal Di        | ifferentiation | Central N                       | eurocytoma<br>others |         |
|                                                             |                |                                 |                      |         |
|                                                             |                |                                 |                      |         |
|                                                             |                |                                 |                      |         |
|                                                             |                |                                 |                      |         |
|                                                             |                |                                 |                      |         |



## LGG Heterogeneity: Oligodendrogliomas

- Cytoreduction impacts the rate for transformation
  - HEARspherscholgeredict \$1985 Steapupesoligedepetrosphiomas\*
  - Insular LGGs: EOR > 90%: 5-year MPFS of 88% (*p*=0.04)\*

80

(months)

**50** 

Is the biological impact of EOR driven by him

Journal of Neurosurgery

Laura **\$ny**der, MD Assistant **P**röfessor of Neurosurge Barrow Neurological Institute



100

120



\*Smith et al. J Clin Oncol. 2008; 26(8):1338-45

\*Snyd&aatailetldNeLiNtsurgs2.01 2,01209 (121) 23:0) 9 11 9

--- EOR < 90



100-

FEBRUARY 2014 Volume 120, Number 2

## **High-Grade Gliomas: Extent of Resection**





### **HGG Surgery in the Modern Literature**



## **European 5-ALA Study Group**



## The Value of Extent of Resection: High-Grade Gliomas

### <u>Néwi Ma Nagernélan Bajardigm 66 Hiljbk Gord de Gilionaas</u> 500 Newly-Diagnosed Glioblastoma Patients



Sanai et al., J. Neurosurg., 2011 Jul; 115(1): 3-8

## The Value of Extent of Resection: Recurrent High-Grade Gliomas

### 170 consecutive glioblastoma patients at first recurrence

- All had initial resection and Stupp regimen at first diagnosis
- All underwent repeat resection upon recurrence
- Mean clinical follow-up 22.6 months



#### Oppenlander et al., J. Neurosurg. 2014 Apr; 120(4):846-53

## The Value of Extent of Resection: Recurrent High-Grade Gliomas

### 170 consecutive glioblastoma patients at first recurrence

- All had initial resection and temozolamide/RT at first diagnosis
- All underwent repeat resection upon recurrence
- Mean clinical follow-up 22.6 months

Oppenlander et al., J. Neurosurg. 2014 Apr; 120(4):846-53 Graded Effect of Extent of Resection

#### **Multivariate Cox Regression**

| Variable | P value |
|----------|---------|
| Age      | 0.0009  |
| EOR      | 0.0018  |



### Is There Value to Extent of Resection?



### Is There Value to Supramaximal Extent of Resection?



Duffau H, Acta Neurochir (Wien), 2015 Nov 3

## **Glioma Rates of Gross-Total Resection:** Results in the Modern Literature

2000-2010

### **High-Grade Glioma**

Reported Rates of Gross-Total Resection 33% - 76%

**Disaggregated Dataset** 1412 of 2266 Tumors = 62.3% GTR

### **Low-Grade Glioma**

Reported Rates of Gross-Total Resection 14% - 46%

**Disaggregated Dataset** 399 of 1462 Tumors = 27.3% GTR



## **Maximizing Glioma Extent of Resection**

### Fundamental Techniques

Operative Corridor Selection: using gravity & arachnoidal planes

minimizing morbidity visualizing cellular infiltration



## **Maximizing EOR: Optimizing Exposure**

#### **Arachnoidal Dissection**

#### **Entry-Point Selection**

#### **Gravity-Retraction**











## **Maximizing Glioma Extent of Resection**

### Fundamental Techniques

✓ Operative Corridor Selection

### Intraoperative Mapping Techniques: minimizing morbidity



### □ Fluorescence-Guided Surgery



## **Intraoperative Stimulation Mapping:** Resect to the Boundaries of Function



### **Maximizing EOR: Intraoperative Mapping**









## **Maximizing EOR: Intraoperative Mapping**



with stimulation mapping without stimulation mapping

- Meta-analysis of 6095 low- and high-grade glioma cases
- Stimulation mapping improved gross-total resection in eloquent areas
- Two-fold reduction in late severe deficits with stimulation mapping (8.3% vs. 3.4%)

#### DeWitt et al., J Clin Oncol. 2012 Jul 10;30(20):2559-65

## **Maximizing Glioma Extent of Resection**

### Fundamental Techniques

- ✓ Operative Corridor Selection
- ✓ Intraoperative Mapping Techniques
- **Fluorescence-Guided Surgery: visualizing cellular infiltration**





### 5-Aminolevulinic Acid (5-ALA)



## **5-ALA: High-Grade Glioma Visualization**



Necrotic Center
 No Fluorescence
 Iual will enhance
 ostoperative MRI
 Border of Necrosis
 Deep Red

lual <mark>Will Bioter Thanse</mark> osto**perative MR**k

<u>m for high-grade gliomas</u>



### **5-ALA in Non-Enhancing Gliomas**

- Focal PpIX fluorescence observed in 46% of nonenhancing gliomas
- 85% of PpIX(+) nonenhancing gliomas had WHO grade III histology
- Proliferation index, cell density, and nuclear pleomorphism were significantly higher in areas of focal PpIX fluorescence



### **Limitations of Wide-Field Microscopy**

Image intensity of wide-field microscopy is subjective, particularly at the diffuse margins of a glioma



Liu JT et al., Neurosurgery 2014 Jul;75(1): 61-71

### Intraoperative Confocal Microscopy: Cellular Resolution



# **BALANCE Trial:** Low-Grade Gliomas



PI: Nader Sanai / NCT01502280

### **5-ALA Visualization of Low-Grade Gliomas**



### **5-ALA Visualization of Low-Grade Gliomas**

|     |     |                   |                |                             | Microscopic Fluorescence |                        |                  |                   |
|-----|-----|-------------------|----------------|-----------------------------|--------------------------|------------------------|------------------|-------------------|
| Age | Sex | Tumor<br>Location | Tumor<br>Grade | Macroscopic<br>Fluorescence | Initial<br>Encounter     | Mid-point<br>Resection | Cavity<br>Margin | Volumetric<br>EOR |
| 19  | м   | Frontal           | Grade I        | No                          | Yes                      | Yes                    | Yes              | 100%              |
| 37  | F   | Frontal           | Grade II/III   | No                          | Yes                      | Yes                    | Yes              | 100%              |
| 21  | М   | Frontal           | Grade II       | No                          | Yes                      | Yes                    | No               | 98%               |
| 64  | М   | Temporal          | Grade II       | No                          | Yes                      | Yes                    | No               | 87%               |
| 39  | F   | Parietal          | Grade II       | No                          | Yes                      | Yes                    | Yes              | <b>99</b> %       |
| 32  | F   | Frontal           | Grade II       | No                          | Yes                      | Yes                    | No               | 94%               |
| 38  | F   | Temporal          | Grade II       | No                          | Yes                      | Yes                    | Yes              | <b>92</b> %       |
| 49  | М   | Insular           | Grade II       | No                          | Yes                      | Yes                    | Yes              | <b>93</b> %       |
| 24  | М   | Temporal          | Grade II       | No                          | Yes                      | Yes                    | No               | <b>97</b> %       |
| 30  | м   | Insular           | Grade II       | No                          | Yes                      | Yes                    | Yes              | 90%               |

#### Sanai et al., J. Neurosurg. 2011; 115(4): 740-8

### Intraoperative Dual-Axis Confocal Microscopy



**Single-Axis Confocal** 



Liu et al., Neurosurgery 2014

•Highraxial resolution needs high-NA lens

- Dual-Axis Confocal (DAC) architecture
  Short working distance improves rejection of out-of-focus light
- More background noise from scattered light Enhanced Sensitivity & Contrast
  - Light scattered along the illumination path (blue) is less likely to be collected

·Ihow owmerical aperture (NA) lenses

- Off-axis path traversed by photons
  Long working distance eliminates noise due to back
- Lessfrecisie fisom scattered light



### **Intraoperative Dual-Axis Confocal Microscopy**





NCI 1R01CA175391 (PI: Sanai)

**Normal Vasculature** 

Glioma Vasculature

### **Quantification of Microscopic Tumor Burden**





**PpIX(+) Human Glioma** 



Real-Time Cell Density Heat Map

## Conclusions



- Extent of resection matters for all grades of gliomas
- Cytoreduction can delay malignant transformation and alter the natural history of low-grade gliomas
- 80% is the extent of resection threshold for newlydiagnosed and recurrent high-grade gliomas
- Intraoperative stimulation mapping is a critical to maximize extent of resection and minimize morbidity
- In the near future, extent of resection will be measured by microscopic tumor burden at the cavity margins

# Thank you for your attention

Email: Nader.Sanai@bnaneuro.net