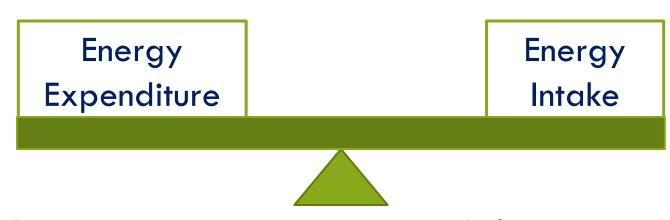
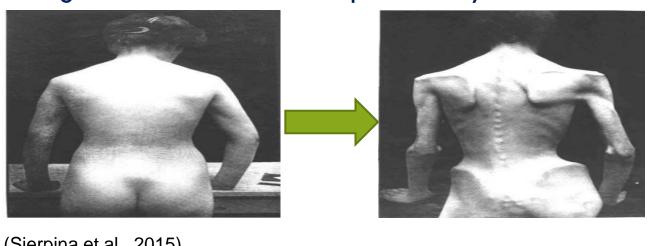



# NUTRITION, CACHEXIA, ANOREXIA


Professor Jeyakumar Henry
Director, Clinical Nutrition Research Center,
SICS, A\*STAR
Professor, Department of Biochemistry, NUS
Yong Loo Lin School of Medicine

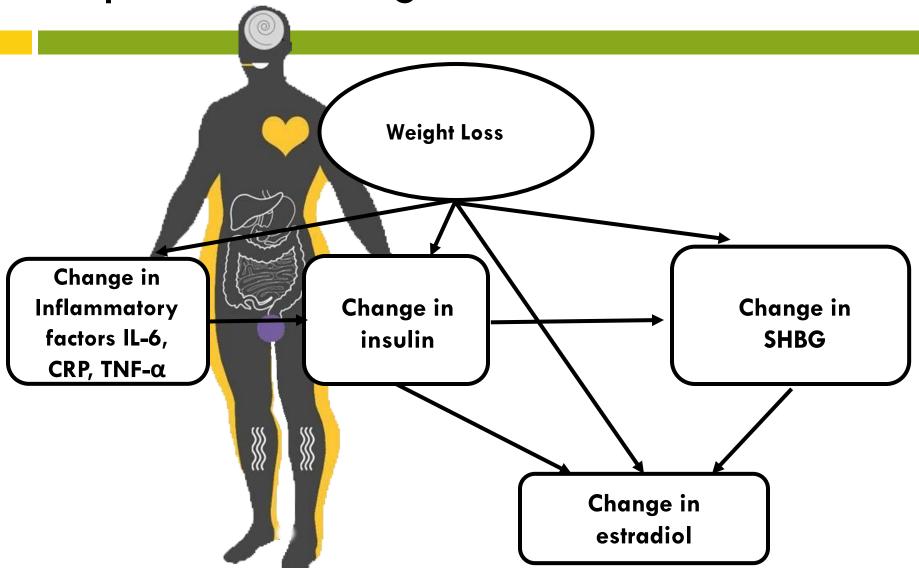



#### Disclosure slide

- Please state your disclosure (even if you have nothing to declare)
- I have no potential conflict of interest to report.

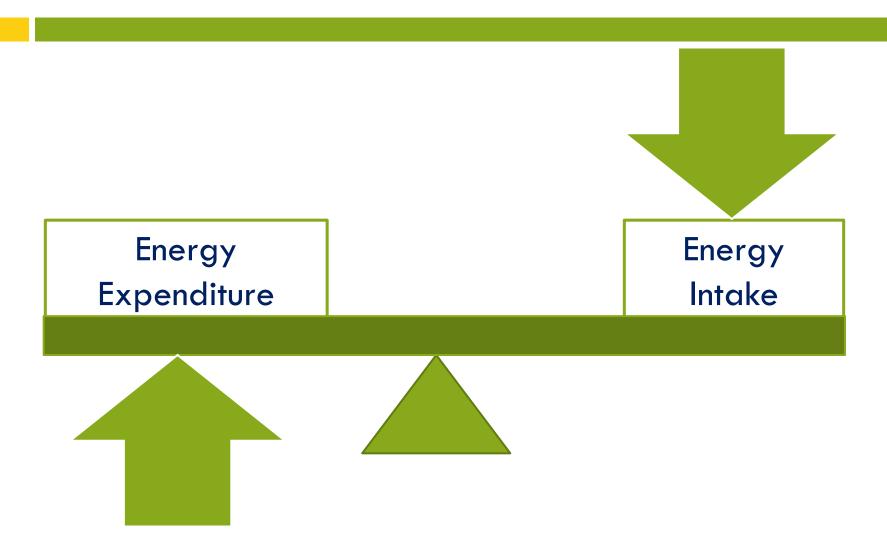
#### **Energy Balance Equation**



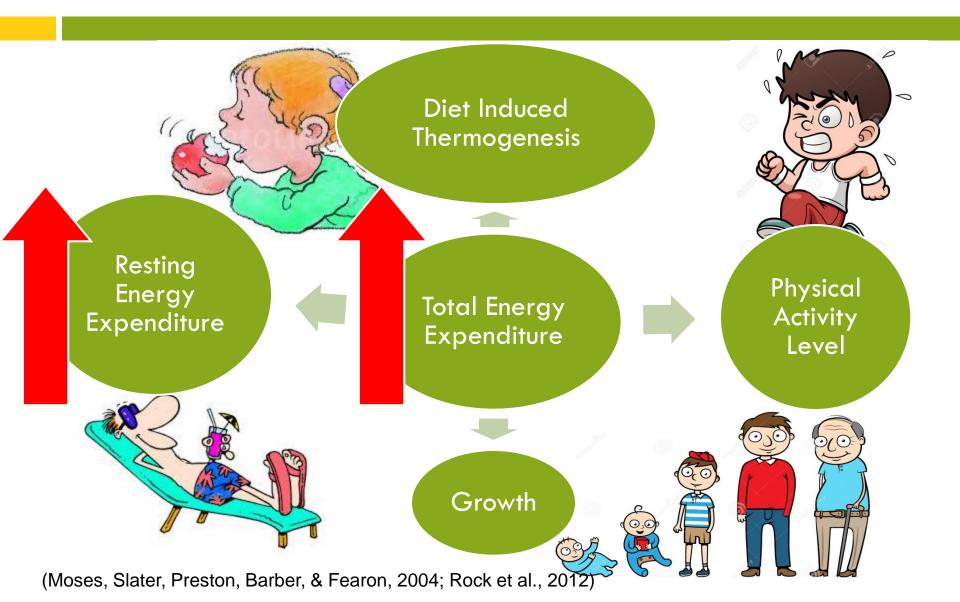

- Most of the cancer patients experience weight loss
- Weight loss is known to be potentially harmful



(Sierpina et al., 2015)




## Impact on Weight Loss



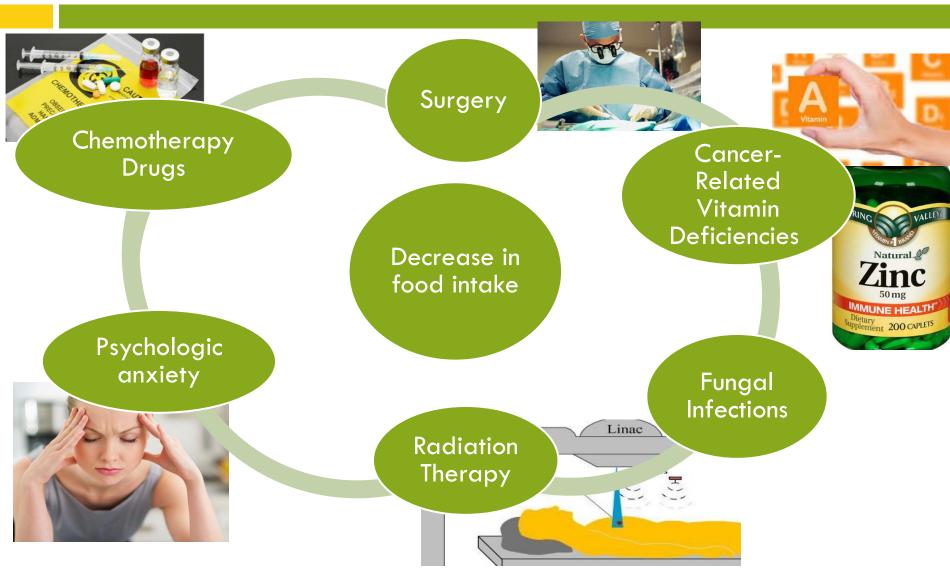

(Sierpina et al., 2015)

### **Energy Imbalance**



#### **Energy Expenditure**

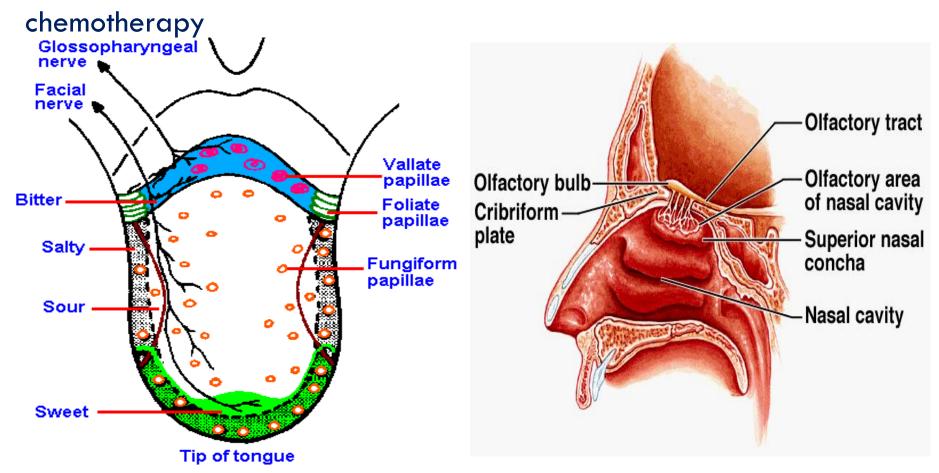



#### Decrease in Energy Intake

- A decrease in food intake will lead to a significant decline in the nutritional status
- Anorexia and severe weight loss along with muscle wasting typically occurs from decreased appetite






### **Energy Intake**



(Boltong & Keast, 2012; Epstein & Barasch, 2010; Farhangfar et al., 2014; Hong et al., 2009; Ijpma, et al., 2015)

#### Energy Intake – Sensory Changes

38-77% of patient reported sensory changes after receiving



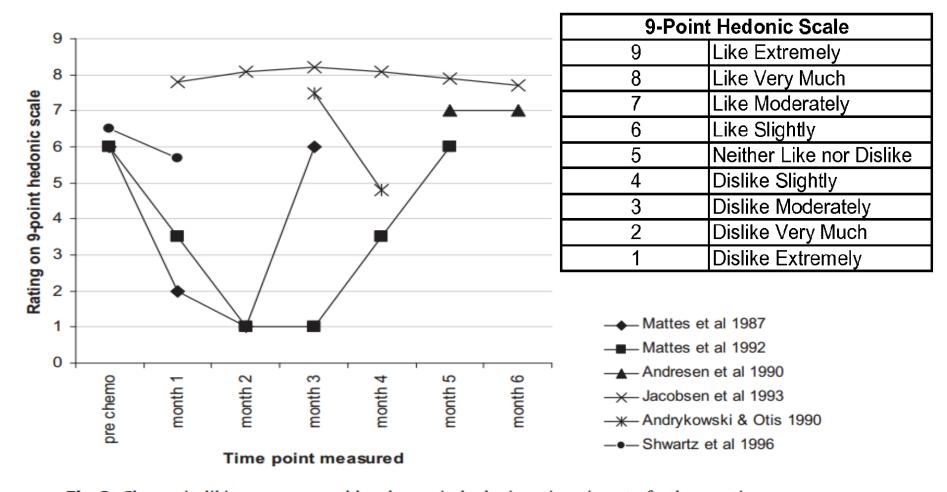
(Boltong & Keast, 2012; Epstein & Barasch, 2010; Farhangfar et al., 2014; Hong et al., 2009; Ijpma, Renken, ter Horst, & Reyners, 2015)

### Energy Intake – Sensory Changes

| Taste-related abnormalities |                                                         |  |  |
|-----------------------------|---------------------------------------------------------|--|--|
| Ageusia                     | Absence of taste perception                             |  |  |
| Hypogeusia                  | Decreased sensitivity to taste perception               |  |  |
| Dysgeusia                   | Distortion of taste perception and hedonics experience  |  |  |
| Odour-related abnormalities |                                                         |  |  |
| Anosmia                     | Absence of odor perception                              |  |  |
| Hyposmia                    | Decrease sensitivity to odor perception                 |  |  |
| Dysosmia                    | Distorted ability to identify odors                     |  |  |
| Parosmia                    | Altered odor perception in the presence of another odor |  |  |
| Agnosia                     | Inability to differentiate perceived odors              |  |  |
| Phantosmia                  | Odor perception without the presence of any odor        |  |  |

(Boltong & Keast, 2012; Epstein & Barasch, 2010; Farhangfar et al., 2014; Hong et al., 2009; Ijpma, Renken, ter Horst, & Reyners, 2015)

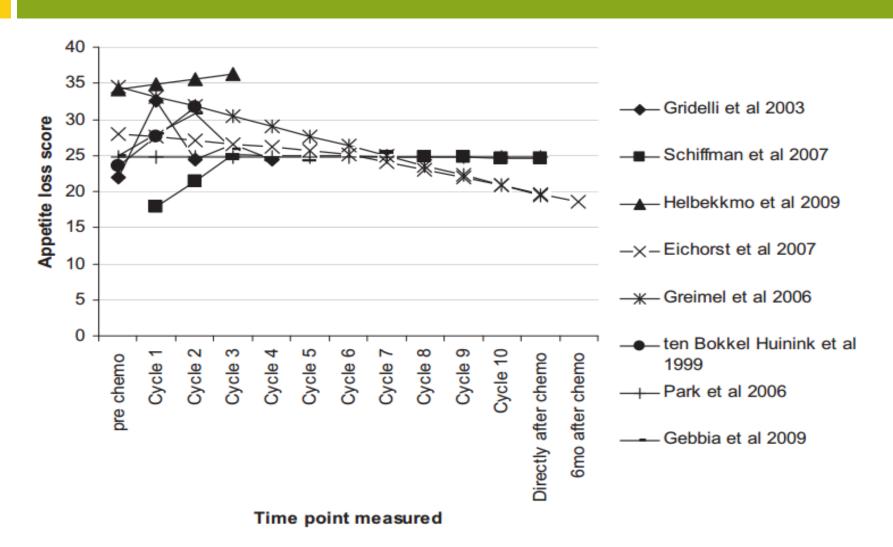
#### Energy Intake – Food Aversion


Most Commonly Reported Aversive Food Items During Chemotherapy.

| Food<br>item                                        | Total number of<br>aversions<br>reported | Number of studies in which aversive item reported                                    | Corresponding taste quality           |
|-----------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------|
| Coffee Red meat Tea Chocolate Citrus fruit or juice | 70<br>60<br>39<br>36<br>29               | 5 <sup>1-5</sup> 6 <sup>1-6</sup> 5 <sup>1-5</sup> 4 <sup>2-6</sup> 3 <sup>4-6</sup> | Bitter Umami Bitter Sweet/bitter Sour |

<sup>&</sup>lt;sup>1</sup>Grindel<sup>59</sup>; <sup>2</sup>Andrykowski and Otis<sup>65</sup>; <sup>3</sup>Boakes et al.<sup>69</sup>; <sup>4</sup>Holmes<sup>70</sup>; <sup>5</sup>Jacobsen et al.<sup>66</sup>; <sup>6</sup>Mattes et al.<sup>67</sup>

Notes: Information in this table is compiled from study participant reports of aversive food items during the study period. Information is compiled from a total of 310 participant responses over six studies contained within the hedonics arm of the


#### Energy Intake – Food Aversion



**Fig. 3.** Change in liking as measured by change in hedonic rating given to foods over time.

(Boltong & Keast, 2012)

#### Energy Intake – Appetite



(Boltong & Keast, 2012)

#### Energy Intake – Sensory Changes

#### Detection Threshold (BET) in Renal Patients and Control

|                                                        | Normal Middle-Aged                                                    | CAPD Renal Patients                    | Non-CAPD<br>Renal Patients             | Significance                                |
|--------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|
| Sample size<br>Mean age (range)<br>Detection threshold | 13<br>49 (36–61)                                                      | 19<br>56 (43–70) <sup>a</sup>          | 11<br>52 (37–71)                       | P < 0.05, <sup>a</sup> CAPD vs. middle-aged |
| BET of beef<br>BET of pork                             | $\begin{array}{c} 0.082  \pm  0.076 \\ 0.065  \pm  0.038 \end{array}$ | $0.074 \pm 0.063$<br>$0.084 \pm 0.092$ | $0.116 \pm 0.166$<br>$0.164 \pm 0.323$ | ns<br>ns                                    |

BET = best estimated threshold.

#### Detection Threshold (BET) in Cancer Patients and Controls

|                                                        | , , ,                                          |                       |                                                                          |
|--------------------------------------------------------|------------------------------------------------|-----------------------|--------------------------------------------------------------------------|
|                                                        | Normal Middle-Aged and Elderly Cancer Patients | RT/CT Cancer Patients |                                                                          |
| Sample size<br>Mean age (range)<br>Detection threshold | 35<br>69 (36–94)                               | 36<br>69 (36–94)      | 23<br>67 (39–82)                                                         |
| BET of beef<br>BET of pork                             | 0.290 ± 0.334                                  | $ 0.234 \pm 0.326$    | $\begin{array}{l} 0.457 \pm 0.0652 ns \\ 0.254 \pm 0.263 ns \end{array}$ |

BET = Best estimated threshold.

(Ng et al., 2004)

<sup>&</sup>lt;sup>a</sup>P < 0.05 compared with normal middle-aged, by Mann-Whitney Test.</p>

ns = Not significant by analysis of covariance (ACOVA) adjusted for age.

ns = Not significant compared with normal middle aged and elderly, either by T-test or Mann-Whitney test.

#### Energy Intake – Sensory Changes

Detection Threshold of Beef and Pork (BET) in Different Treatment Groups of Patients and Controls

|                                         | Normal Middle-Aged<br>and Elderly                  | Cancer Patients with Different Therapy           |                                               |              |
|-----------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------|--------------|
|                                         |                                                    | RT only                                          | RT+CT/CT only                                 | Significance |
| Mean age (range)<br>Detection threshold | 69 (36–94)                                         | 70 (54–82)                                       | 64 (39–77)                                    | ns           |
| BET of beef $(n)$<br>BET of pork $(n)$  | $0.290 \pm 0.334 $ (35)<br>$0.234 \pm 0.326 $ (36) | $0.419 \pm 0.657 (14)$<br>$0.280 \pm 0.294 (14)$ | $0.515 \pm 0.680 $ (9) $0.212 \pm 0.214 $ (9) | ns<br>ns     |

BET = best estimated threshold.

ns = Not significant either by one-way ANOVA, multiple comparison by LSD or Kruskal-Wallis Test.

#### Energy Intake – Can it be enhanced?



#### Increase in Energy Intake

Table 2. Total food intake (g) for the control and experimental days

|           |                        |               | Experimental days |               |
|-----------|------------------------|---------------|-------------------|---------------|
| Meal      | Control (days 1 and 2) | Day 3         | Day 4             | Day 5         |
| Breakfast | 123±23                 | 129±31        | 123±27            | 127±22        |
| Lunch     | 251±110                | $310\pm 83$   | $285 \pm 91$      | $266 \pm 65$  |
| Dinner    | 218±71                 | $309 \pm 156$ | $315 \pm 134*$    | $275 \pm 129$ |
| Total     | 592±172                | 748 ±220*     | $723 \pm 178$     | $668 \pm 148$ |

Results are expressed as mean ± standard deviation.

Values were significantly higher than the control: P < 0.05.

#### Increase in Energy Intake

Table 4. Protein intake (g) for the control and experimental days

|           |                        |                | Experimental days |                |
|-----------|------------------------|----------------|-------------------|----------------|
| Meal      | Control (days 1 and 2) | Day 3          | Day 4             | Day 5          |
| Breakfast | 2.1 ±0.4               | 2.3±0.4        | 1.9±0.3           | 2.2±0.4        |
| Lunch     | 5.4 ± 1.9              | $6.6 \pm 1.9$  | $6.1 \pm 2.2$     | $5.7 \pm 1.2$  |
| Dinner    | $8.3 \pm 3.8$          | $11.3 \pm 7.0$ | $12.0 \pm 7.1$    | $10.3 \pm 5.0$ |
| Total     | 15.8 ± 5.5             | $20.2 \pm 7.9$ | $20.0 \pm 3.3$    | $18.2 \pm 5.2$ |

Results are expressed as mean ± standard deviation.

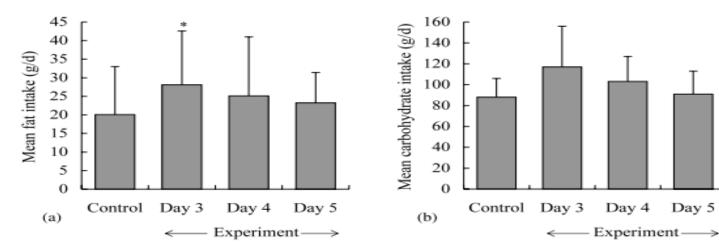



Figure 1. Daily fat (a) and carbohydrate (b) intake for the control and experimental days. Values are means, with standard deviations represented by vertical bars. Value was significantly higher than the control: \*P < 0.05.

(Henry et al., 2003)

#### Energy requirements

- Accurate determination of energy requirements in cancer patient is essential to avoid feeding-association complications
- Underfeeding and overfeeding are often common in cancer patients
- Indirect calorimetry is the preferred method for determining caloric need
- Harris-Benedict equation for cancer patients

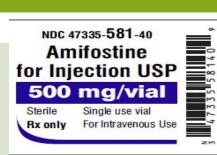
Where h= kcal per day; W= weight in kilograms; S= stature in centimeters; A= age in years.

# Measured Vs Estimated Resting Energy Expenditure

|                                        | Clinically Estimated   | Harris-Benedict Equation | Measured        |
|----------------------------------------|------------------------|--------------------------|-----------------|
| Resting energy expenditure (kcal/d)    | 1,862 ± 330*           | $1,613 \pm 382$          | $1,623 \pm 384$ |
| Resting energy expenditure (kcal/kg/d) | $27.6 \pm 6.2 \dagger$ | $23.4 \pm 3.6$           | $23.8 \pm 5.7$  |

(Pirat et al., 2009)

#### Conclusion




- Estimation of basal metabolic rate provides a useful template to predict energy requirement in cancer patients
- Given the variety of cancer sites and diversify of treatment, no universal diet therapy is available
- Methods to enhance food intake and minimize food aversion should be explored using food and food ingredients.
- Research into locally based food & spices may be a way forward to enhance food intake
- Minimising weight loss & enhancing the pleasure of food intake in cancer still remains a challenge.

#### Possible Approach

Preventive approach

- Radioprotectants
- Radiation treatment planning
- Avoid familiar food prior to therapy



Targeted approach

- Manage hyposalivation
- Chew gum to cover unpleasant and provide symptomatic relief
- Use of zinc sulfate supplementation

Therapy for taste change

- Dietary counseling
- Dietary modification

