Circulating Biomarkers in Metastatic Castration Resistant Prostate Cancer

Kim Nguyen Chi, MD FRCPC
Professor of Medicine, University of British Columbia
Chair, GU Tumour Group, BC Cancer Agency
Director, Clinical Research, BC Cancer Agency
Associate Director, Clinical Research, Vancouver Prostate Centre
Chair, GU Disease Site Committee, NCIC CTG
Disclosures

• Consultant, Honoraria
 • Amgen, Astellas, Astra Zeneca, Bayer, Janssen, Lily, Millenium, Roche, Sanofi, Oncogenex (uncompensated)

• Grants, Research Support
 • Astellas, Exelixis, Janssen, Lily, Millennium, Novartis, Sanofi, Tokai, Oncogenex
Biomarker

• A characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.
Prognostic vs. Predictive Biomarkers

• Prognostic biomarkers
 – Provides information on course of the disease: survival
 – Many examples for CRPC:
 • Hemoglobin, LDH, alkaline phosphatase, PSA
 • Circulating tumour cell enumeration, bone turnover markers, circulating androgens

• Predictive biomarkers
 – Provides information on outcome to a particular treatment
 – Several candidates – none have been validated for clinical utility in CRPC
Molecular Predictive Biomarkers for CRPC

• Tissue is an issue
 – Primary prostate: Not representative of mCRPC
 – Metastatic biopsies: Invasive and difficult
 – “Liquid” biopsies: Technical issues, representative?

CTC: Veridex Platform

Prognostic

Response Indicator

Cox HR (95% CI) = 2.2 (1.9 - 2.6)
chi-square = 101.09
(p-value < 0.0001)

CTC: AdnaGen Platform

AdnaTest ProstateCancerSelect

AdnaTest ProstateCancerDetect

Base pairs

DNA-Ladder	Sample 1	Sample 2	Sample 3	Sample 4	Negative control (C-)	Positive Control (C+)
1500 - | 1500 - | 1500 - | 1500 - | 1500 - | 1500 - | 1500 -
1000 - | 1000 - | 1000 - | 1000 - | 1000 - | 1000 - | 1000 -
850 - | 850 - | 850 - | 850 - | 850 - | 850 - | 850 -
700 - | 700 - | 700 - | 700 - | 700 - | 700 - | 700 -
500 - | 500 - | 500 - | 500 - | 500 - | 500 - | 500 -
400 - | 400 - | 400 - | 400 - | 400 - | 400 - | 400 -
300 - | 300 - | 300 - | 300 - | 300 - | 300 - | 300 -
200 - | 200 - | 200 - | 200 - | 200 - | 200 - | 200 -
150 - | 150 - | 150 - | 150 - | 150 - | 150 - | 150 -
100 - | 100 - | 100 - | 100 - | 100 - | 100 - | 100 -
50 - | 50 - | 50 - | 50 - | 50 - | 50 - | 50 -

PSMA | PSA | EGFR | Actin
AdnaGen Platform to Detect AR-V7

CTC AR-V7 and Outcomes with ABI and ENZA

CTC AR-V7 and Outcomes with Docetaxel

ARV7 +: PSA RR 65%
ARV7 -: PSA RR 41%

ES Antonarakis et al, JAMA Oncol. 2015;1(5):582-591
CTC: Epic Sciences Platform

Slide Preparation

Cell Staining

Scanning

Biomarker Analysis & CTC Identification

Single CTC Digital Pathology

<table>
<thead>
<tr>
<th>Nuclear Features</th>
<th>Cytoplasmic Features</th>
<th>Cell Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Area</td>
<td>Cytoplasmic Area</td>
<td>AR Expression</td>
</tr>
<tr>
<td>Nuc. Convex Area</td>
<td>Cytoplasmic Area</td>
<td>CK Expression</td>
</tr>
<tr>
<td>Nuc. Major Axis</td>
<td>Cytoplasmic Area</td>
<td>N/C Ratio</td>
</tr>
<tr>
<td>Nuc. Minor Axis</td>
<td>Cytoplasmic Area</td>
<td></td>
</tr>
<tr>
<td>Nuclear Convexity</td>
<td>Cytoplasmic Convexity</td>
<td></td>
</tr>
<tr>
<td>Nuclear Solidity</td>
<td>Cytoplasmic Solidity</td>
<td></td>
</tr>
<tr>
<td>Nuclear Entropy</td>
<td>Cytoplasmic Entropy</td>
<td></td>
</tr>
<tr>
<td>Nuclear Spreading</td>
<td>Cytoplasmic Spreading</td>
<td></td>
</tr>
<tr>
<td>Nucleoli Presence</td>
<td>Cytoplasmic Presence</td>
<td></td>
</tr>
</tbody>
</table>

Nucleus

CK

Biomarker
CTC: Single Cell Genomics

- CTC Identified
- Coordinates recorded
- Slide treated
- Coordinates transferred Slide Mounted
- DNA Purified
- WGA Amplification
- Cells Lysed
- CTC transferred to PCR Plate
- CTC relocated & Picked
- DNA Product QC
- DNA Quantitation
- DNA Library Prep
- Library QC
- Illumina Sequencing

DNA yield QC report
Library yield QC Report

EPIC SCIENCES™
CTC: Single Cell Genomics

M. Landers et al, J Clin Oncol 33, 2015 (suppl; abstr 11035)
CTC AR-V7 and Treatment Outcomes

<table>
<thead>
<tr>
<th>AR Therapy (N=123)</th>
<th>Taxane Therapy (N=56)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSA Responder</td>
</tr>
<tr>
<td>AR-v7 Positive</td>
<td>0</td>
</tr>
<tr>
<td>AR-v7 Negative</td>
<td>57</td>
</tr>
<tr>
<td>Total</td>
<td>57</td>
</tr>
</tbody>
</table>

HR: 2.92 (95% CI: 1.63, 5.22)

HR: 11.44 (95% CI: 5.59, 23.44)

H. Scher et al, ESMO, 2015
Galeterone

CYP17 Lyase Inhibitor
- No mandatory steroids
- Fasting not required
- Preclinical activity in mutation T878A

AR Antagonist
- Not a GABA$_A$ antagonist
- No seizures
- Preclinical activity in mutation F876L

AR Degrader
- Active in C-terminal loss AR splice variants

Maximal PSA, %

M0 and M1 Treatment Naïve Arms
Patients C-terminal loss on CTC (AR-V+)

M-E Taplin et al, ESMO, 2014
Galeterone: ARMOR-3 Study

- **mCRPC**
 - Treatment naïve
 - *Screen 1500 patients for AR-V7*
 - 148 to randomize

Randomize

- **n = 74**
- **Galeterone**
- **Enzalutamide**

Primary:
- rPFS

Secondary:
- OS
- Time to chemotherapy
- Time to 1st SRE
- PSA50 response
- Objective response
- ECOG PS Change
- CTC enumeration
- Safety
- QOL
- Pain

ClinicalTrials.gov: NCT02438007
EPI-001 and Analogues
(ESSA Pharmaceuticals)

RJ Andersen, Cancer Cell 17:535, 2010; M. Sadar, Cancer Res, 71:1208, 2011; ClinicalTrials.gov: NCT02606123
Targeting the AR DNA Binding Domain

Cell free DNA (cfDNA) and circulating tumour DNA (ctDNA)
- cfDNA: DNA found freely in the circulation
- Higher cfDNA concentration in cancer patients vs. healthy controls
- ctDNA
 - Highly degraded and present in only small amounts
 - Diluted: can constitute <1% - 90% of total cfDNA
- Genomic changes in ctDNA are detectable in mCRPC patients
 - CN gains/losses, mutations, rearrangements
 - Digital PCR, NGS

Plasma AR Sequencing and Outcomes with Abiraterone

Plasma AR Sequencing and Outcomes with Abiraterone

Overall survival

- Hazard ratio (log-rank): 7.33
- P value: 1.2×10^{-7}
- 95% CI: 3.51–15.34
- Log-rank test: P value 1.3×10^{-9}

Progression-free survival

- Hazard ratio (log-rank): 3.73
- P value: 2×10^{-6}
- 95% CI: 2.17–6.41
- Log-rank test: P value 5.6×10^{-7}

Patients with mCRPC commencing Enzalutamide (n=65) → Plasma collected at baseline, 12-weeks and/or progression → DNA extracted from plasma and WBC → cfDNA profiled with:
- aCGH
- Illumina MiSeq: AR exons 2-8
- Ion Ampliseq Custom Panel
→ AR and non-AR gene aberrations correlated with:
- PSA response (decline ≥50%)
- PFS (clinical +/- radiographic)

Extraction of cfDNA: 122/126 samples (97%)
aCGH: 117/122 samples (96%)
AR deep sequencing (mean 31,000X): 120/122 samples (98%)

KN Chi et al, Eur J Cancer, 51(S3):Abstract 2504, 2015
Genomic Profile of Baseline cfDNA: aCGH

<table>
<thead>
<tr>
<th>CN change</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>8p loss</td>
<td>24%</td>
</tr>
<tr>
<td>8q gain</td>
<td>33%</td>
</tr>
<tr>
<td>AR gain/amp</td>
<td>30%</td>
</tr>
<tr>
<td>MYC gain/amp</td>
<td>29%</td>
</tr>
<tr>
<td>RB1 loss</td>
<td>21%</td>
</tr>
<tr>
<td>MET gain/amp</td>
<td>13%</td>
</tr>
<tr>
<td>CCND1 gain/amp</td>
<td>10%</td>
</tr>
<tr>
<td>CCNE1 gain/amp</td>
<td>6%</td>
</tr>
</tbody>
</table>

KN Chi et al, Eur J Cancer, 51(S3):Abstract 2504, 2015
Genomic Profile of Baseline cfDNA: AR Sequencing

<table>
<thead>
<tr>
<th>AR mutation</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any</td>
<td>22%</td>
</tr>
<tr>
<td>L702H</td>
<td>10%</td>
</tr>
<tr>
<td>H875Y</td>
<td>10%</td>
</tr>
<tr>
<td>T878A</td>
<td>8%</td>
</tr>
<tr>
<td>W741L/C</td>
<td>6%</td>
</tr>
<tr>
<td>Other</td>
<td>2%</td>
</tr>
<tr>
<td>Multiple (≥ 2)</td>
<td>10%</td>
</tr>
</tbody>
</table>

All patients with L702H (glucocorticoid activated) and T878A (progesterone activated) mutations had received prior abiraterone acetate
Genomic Aberrations in Baseline cfDNA: Outcomes on Enzalutamide

<table>
<thead>
<tr>
<th>Variable</th>
<th>PSA Decline ≥ 50%</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB1 loss (yes vs. no)</td>
<td>8% vs. 46%</td>
<td>0.011</td>
</tr>
<tr>
<td>AR gain/amp (yes vs. no)</td>
<td>16% vs. 48%</td>
<td>0.017</td>
</tr>
<tr>
<td>MET gain/amp (yes vs. no)</td>
<td>0% vs. 44%</td>
<td>0.018</td>
</tr>
<tr>
<td>MYC gain/amp (yes vs. no)</td>
<td>22% vs. 44%</td>
<td>0.101</td>
</tr>
<tr>
<td>AR mutation (yes vs. no)</td>
<td>23% vs. 41%</td>
<td>0.239</td>
</tr>
</tbody>
</table>

KN Chi et al, Eur J Cancer, 51(S3):Abstract 2504, 2015
cfDNA at Progression

AR GAIN

AR MUTATIONS

PI3K/AKT

PARP Inhibitor

WNT PATHWAY

KN Chi et al, Eur J Cancer, 51(S3):Abstract 2504, 2015
Abiraterone vs. Enzalutamide Sequencing Study

A phase 2, randomized, multicenter study

Whole Blood:
- cfDNA Collection
- RNA Collection

1ST LINE THERAPY
- ARM A
 - ABIRATERONE + PREDNISONE
- ARM B
 - ENZALUTAMIDE

2ND LINE THERAPY
- ARM A
 - CROSS-OVER TO ENZALUTAMIDE
- ARM B
 - CROSS-OVER TO ABIRATERONE + PREDNISONE

CONTINUE UNTIL CLINICAL PROGRESSION

ClinicalTrials.gov: NCT02125357
Cabazitaxel vs. Abiraterone or Enzalutamide in Poor-Prospective mCRPC

OZM-054: A phase 2, randomized, multicenter study

CBZP: cabazitaxel; ENZA: enzalutamide
ClinicalTrials.gov: NCT02254785
Precision Medicine for CRPC

Plasma and whole blood from pts progressing on ABI and/or ENZA

- Gene copy number profiling and sequencing of cfDNA
- RT-PCR for AR splice variants

- RB1 loss → Docetaxel
- CCND1 gain/amp → CDK 4/6 inhibitor
- MET gain/amp → MET inhibitor
- MYC gain/amp → BET inhibitor
- Homologous Repair Pathway Defect → WEE1 inhibitor
- BRCA1/2 mutation → PARP inhibitor
- PIK3CA mutation → AKT/PI3K inhibitor
- AR splice variants AR mutants → Non-ligand binding domain AR inhibitors
Summary

• Analyses of CTC and cfDNA are promising, minimally-invasive means to molecularly characterize CRPC for predictive biomarkers
 – AR copy number gains, mutations and splice variants have been associated with poor clinical outcomes and resistance with our current AR targeted agents
 – Other informative genomic aberrations are detectable and potentially actionable
Acknowledgements

• BC Cancer Agency
 – Arun Azad
 – Leanne Seto
 – Christian Kollmannsberger
 – Bernie Eigl
 – Nevin Murray
• Vancouver Prostate Centre
 – Alex Wyatt
 – Stas Volik
 – Anne Haegert
 – Jenny Bazov
 – Colin Collins
 – Martin Gleave