Management of HPV-associated oropharyngeal cancer

Amanda Psyrri, MD, PhD Attikon University Hospital Athens, Greece

Disclosure Slide

I have no conflict of interest to disclose

Learning Objectives

After reading and reviewing this material, the participant should be able to:

- Understand the epidemiology and prognostic classification of HPV-associated oropharyngeal cancers (OPC)
- Present the standard of care treatment and ongoing clinical trials for HPV⁺ OPC
- Summarize data on HPV-targeted therapies
- Present novel approaches for HPV+ OPC

Outline

- Epidemiology
- Prognostic classification
- Current standard of care
- Clinical trials of treatment deintensification
- HPV-targeted therapies
- Novel agents

Epidemic of HPV-associated OPC^{*}

Figure 3. Estimated age-standardized incidence of human papillomavirus (HPV)–positive and HPV-negative tonsillar cancer squamous cell carcinoma cases per 100,000 person-years, Stockholm, Sweden, 1970–2006. Error bars indicate 95% confidence intervals. Data from Näsman et al. (<u>13</u>), with permission of John Wiley and Sons (<u>www.interscience.wiley.com</u>).

SINGAPOR

2015

Anil K. Chaturvedi et al. JCO 2013;31:4550-4559

Oropharyngeal Cancer Disease Variants: Tobacco-related, HPV-related and mixed

SINGAPORE ESTOPASIA 2015 18-21 DECEMBER SINGAPORE

HNSCC: two disease entities

	HPV positive	HPV negative
Tumor site	Tonsil/BOT	All sites
Histology	Basaloid	keratinized
Age	Younger	Older
SE status	High	Low
Risk Factors	Sexual	ETOH/tobacco
Survival	Improved	Dismal
Incidence	increasing	decreasing

OS by HPV status in prospective clinical trials

Regimen	Time	HPV + vs HPV -	P value
Induction + CRT (ECOG)	2 year	95% vs 62%	0.005
CRT (TROG2.2)	2 year	94% vs 77%	0.007
CRT (RTOG0129)	3 year	79%vs 46%	0.002
Induction+CRT (TAX324) Radiation (DAHANCA)	5 year 5 year	93% vs 35% 62% vs 26%	<0.001 0.003

OS: overall survival

HPV and Survival

- The relative survival for HPV positive patient is independent of therapy as long as this therapy is within the current standard of care
- Risk of death is consistently less than 60% that of HPV negative cancers
- The absolute survival difference is consistently higher than 30% across studies

Oropharynx: Classification of patients into risk-of-death categories

Recursive-partitioning analysis identified prognostic factors with the most predictive significance

OS by UICC/AJCC TNM Stage (7th edition)

Fig 1. Overall survival by current American Joint Committee on Cancer/Union for International Cancer Control TNM stage in (A) human papillomavirus (HPV) – related and (B) HPV-unrelated oropharyngeal carcinomas.

Huang, O'Sullivan et al. JCO, 2015

Prognostic Grouping Model of HPV(+) OPC

Clinical Utility

 NCCN guidelines: "HPV testing recommended for all oropharynx tumors"

• U.S Cooperative Groups and European Organization for Research and Treatment of Cancer: "HPV-positive oropharynx cancer is a distinct disease entity"

Treatment of HPV-associated HNSCC

- Guidelines do not currently recommend using HPV status to direct treatment
- However, strategies to treat HPV+ LA-SCCHN have been proposed that take advantage of its tendency to respond to treatment, and are being investigated

Rationale for treatment de-intensification

- The better outcome of HPV+ HNSCC raises the question as to whether we can reduce the intensity of treatment in this patient population
- These patients are young and should not suffer the consequences of unnecessary overtreatment
- Deintensification strategies for LA HNSCC include radiation alone, reducing the dose of radiotherapy, substituting chemotherapy with cetuximab

QUARTERBACK: TPF \rightarrow CT + reduced or standard dose RT in HPV+ SCCHN (OPC, unknown or NP)

Lead investigator: M Posner

Mount Sinai School of Medicine

www.clinicaltrials.gov/ct2/show/NCT01706939

ADEPT

- A phase 3 trial that seeks to deintensify adjuvant therapy following surgery in patients with p16+ oropharyngeal tumors with extracapsular spread in their lymph nodes
- Following surgery, patients are randomized to either IMRT alone or weekly cisplatin/IMRT. Primary endpoints are DFS and LRC. Secondary endpoints are rates of distant failure, DSS, toxicity, and QoL

Late toxicity (cis vs cetuximab)

Variable	Cisplatin	Cisplatin	Cetuximab	Cetuximab
	No =58	%	No=56	%
Residual Renal Dysfunction	13	22.4	0	
Grade III-IV toxicity				
Mucosal	2	3.5	1 ·	1.8
Xerostomia	6	10.3	8	5.9
Subcutaneous Fibrosis	4	7	1 :	2
Neuropathy	2 3	3.4	0)
Laryngoesophageal	5 8	3.6	5 9)

Lefebvre et al JCO March 2013

OS in OPC subpopulation according to p16 status and treatment effect of RT + cetuximab vs RT alone

OS interaction test p=NS

Rosenthal DI ASCO 2015

OS in OPC subpopulation according to p16 status and treatment effect of chemo+cetuximab vs chemo alone

Ongoing Phase 3 studies to assess cetuximab + RT vs CRT in unresectable HPV-associated OPC

 Investigator-sponsored studies ongoing in p16+ OPC in Europe and the US to evaluate the combination of cetuximab + RT vs CRT

ECOG 1308: Phase II Schema

IMRT margins for primary: 1.0 to 1.5cm around gross disease Nodal margin: 1cm margin minimum, treat entire nodal level Primary Objective: 2-year PFS after low-dose IMRT (stat aim: 2-year 85% or better)

IMRT: intensity modulated radiation therapy

Endpoint: 2yr PFS and OS

Cohort (n)	2 year PFS (90% CI)	2 year OS (90% CI)
All low dose pts (62)	0.80 (0.70, 0.88)	0.93 (0.85, 0.97)
T4a (7)	0.54 (0.19, 0.79)	0.86 (0.45, 0.97)
Non-T4a (55)	0.84 (0.73, 0.91)	0.94 (0.86, 0.98)
N2c (19)	0.77 (0.56, 0.89)	0.95 (0.76, 0.99)
Non-N2c (43)	0.82 (0.69, 0.90)	0.93 (0.82, 0.97)
Smoker >10pk-yrs (22)	0.57 (0.35, 0.73)	0.86 (0.67, 0.94)
Smoker ≤10pk-yrs (40)	0.92 (0.81, 0.97)	0.97 (0.87, 0.995)
Smoker ≤10k-yrs, <t4, N2c (27)</t4, 	0.96 (0.82, 0.99)	0.96 (0.82, 0.99)
All high-dose pts (15)*	0.65 (0.41, 0.82)	0.87 (0.63. 0.96)

* 3 high-dose pts did not go on to receive RT

HPV-targeted therapies

- Humoral response
- Cellular response

HPV therapeutic vaccines

- HPV E6 and E7 are attractive targets for tumor immunotherapy:
 - foreign viral proteins
 - uniquely expressed by cancer cells
 - constitutively expressed by cancer cells to maintain the malignant phenotype⁺

+Rampias T...Psyrri A: JNCI 2007

Vaccination against HPV16 in vulval intraepithelial neoplasia (VIN)

- In this single-group study involving women with grade 3 vulvar intraepithelial neoplasia associated with human HPV-16, vaccination against HPV-16 infection with a peptide vaccine was related to a clinical response in 15 of 19 patients (79%) at 1 year
- This clinical response was associated with induction of HPV-16-specific T cells

Immune Response before and after Vaccination

18-21 DECEMBER SINGAPORE SINGAPORE

2015

Kenter GG et al. N Engl J Med 2009;361:1838-1847

Strategies to enhance vaccine efficacy

- Optimize method of vaccination
 i.e. electroporation
- Address suppressive tumor microenviroment
- Combine with multimodality regimen i.e. chemoRT

Addressing immunosuppressive microenvironment

- Treating tumor- bearing mice with HPV tumor cells with low-dose cyclophosphamide resulted in decrease in frequency of inhibitory Tregs as compared to no treatment with cyclophosphamide*
- Combination of HPV DNA therapeutic vaccine (CRT/E7 detox) with cyclophosphamide resulted in increase in the levels of HPV-specific responses, better control of tumor growth (as measured by tumor volume) and better longterm survival*

Pai et al: ASCO 2011

PD1 pathway and HPVassociated HNSCC

Lyford-Pike S et al. Cancer Res 2013;73:1733-1741

Addressing immunosuppressive microenvironment

- PD1 is a negative immunoregulatory checkpoint, a negative signaling receptor expressed on activated T cells, CD4+CD25+ Foxp3-expressing Tregs
- Effective active modulation of immune response with anticancer vaccines would require blockading negative immunological checkpoints that impede an effective immune response
- Therefore combining an HPV therapeutic vaccine with anti-PD1 antibody is a promising therapeutic strategy

Therapeutic HPV vaccine increases sensitivity of poorly immunogenic tumor to anti-PD-1 monotherapy S. Pai et al^{*}

- Objectives: To evaluate whether an HPV vaccine can improve response rates to anti-PD-1 therapy by eliciting CD8+ anti-tumor immune responses
- Materials and Methods: CB7BL/6 mice were inoculated with TC-1 tumor cells and received either anti-PD-1 blocking antibody, CRT/E7 (detox) DNA vaccine or both. Mice were monitored for tumor growth and HPV-specific T cell responses. TC-1 tumors were excised and HPV 16 E7/specific CD8⁺ T cells stained for PD-1 expression with flow cytometry

Pai et al: ICHNO 2015

Frequency of E7-specific CD8+ T cells

Pai et al: ICHNO 2015

Tumor Growth and Survival

Anti-PD-1 Blockade Reverses T cell Anergy

Pai et al: ICHNO 2015

HNSCC expansion cohort of the KEYNOTE-012 Nonrandomized, Phase 1b Multi-cohort trial*

Patients:

- Recurrent or metastatic HNSCC, regardless of PD-L1 or HPV status
- Have measurable disease based on RECIST 1.1
- ECOG performance status of 0 or 1

- Treatment for 24 months[†]
- Documented disease progression[‡]
- Intolerable toxicity

Response assessment: Every 8 weeks

Primary end points: ORR per modified RECIST v1.1 by investigator review; safety

Secondary end points: PFS, OS, duration of response

*Additional cohorts included bladder cancer, TN breast cancer, and gastric cancer †Treatment beyond progression was allowed. ‡Re-treatment was permitted.

Seiwert TY et al ASCO 2015

Baseline Demographics

Characteristic	N = 132* N (%)	Characteristic	N = 132* N (%)
Median age (range), years	60 (25-84)	Prior adjuvant/neoadju therapy	uvant systemic
Male	110 (83.3)	Yes	53 (40.2)
Race		Prior lines of therapy f	or
White	96 (72.7)	recurrent/metastatic disease	
Asian	28 (21.2)	0	22 (16.7)
Other	8 (6.1)		
		1	30 (22.7)
ECUG PS		2	28 (21.2)
[0] Normal Activity	38 (28.8)	3 or more	50 (37.9)
[1] Symptoms, but ambulatory	94 (71.2)	Unknown	2 (1.5)

18-21 DECEMBER

SINGAPORE

SINGAPORE

2015

*Includes patients who received ≥1 dose of pembrolizumab

Treatment-Related Adverse Events

AE in ≥5 % of Patients	N = 132* N (%)
Any	79 (59.8)
Fatigue	20 (15.2)
Hypothyroidism	12 (9.1)
Decreased appetite	10 (7.6)
Rash	10 (7.6)
Dry skin	9 (6.8)
Pyrexia	9 (6.8)
Arthralgia	7 (5.3)
Nausea	7 (5.3)
Weight decreased	7 (5.3)

Grades 3-5 (≥2 patients)	N = 132* N (%)
Any	13 (9.8)
Swelling face	2 (1.5)
Pneumonitis	2 (1.5)

• No treatment-related deaths occurred

*Includes patients who received ≥1 dose of pembrolizumab Data cut off date: March 23, 2015.

Seiwert TY et al ASCO 2015

Overall Response Rate [Site Radiology Review]*

Best overall	Total N = 117 [†]		HPV+ n = 34		HPV– n = 81	
response	n (%)	95% CI	n (%)	95% CI	n (%)	95% CI
ORR	29 (24.8)	17.3- 33.6	7 (20.6)	8.7-37.9	22 (27.2)	17.9- 38.2
Complete Response	1 (0.9)	0.0-4.7	1 (2.9)	0.1-15.3	0 (0)	0-4.5
Partial Response	28 (23.9)	16.5- 32.7	6 (17.6)	6.8-34.5	22 (27.2)	17.9- 38.2
Stable Disease	29 (24.8)	17.3- 33.6	9 (26.5)	12.9- 44.4	19 (23.5)	14.8- 34.2
Progressive Disease	48 (41.0)	32.0- 50.5	13 (38.2)	22.2- 56.4	34 (42.0)	31.1- 53.5
No Assessment [#]	9 (7.7)	3.6-14.1	4 (11.8)	3.3-27.5	5 (6.2)	2.0-13.8
Non-evaluable [±]	2 (1.7)	0.2-6.0	1 (2.9)	0.1-15.3	1 (1.2)	0.0-6.7

Seiwert TY et al ASCO 2015

*Unconfirmed and confirmed RECIST v 1.1 responses

[†]Includes patients who received ≥1 dose of pembrolizumab, had measurable disease at baseline and ≥1 postbaseline scan or discontinued due to PD or DRAE. 15 patients not included in this analysis: 2 did not have baseline assessment and discontinued due to non-drug related AE (7), subject withdrawal of consent (4), other (2).

#No assessment: Discontinued without post-baseline radiographic assessment due to drug related AE (2 patients), clinical PD (6 patients), death due to PD (1 patient)

[±]Non-evaluable: Images were not of sufficient quality to be evaluable

HPV status missing for 2 patients with oropharynx cancer. Cancers outside the oropharynx are considered HPV negative by convention.

Data cutoff date: March 23, 2015.

Durvalumab/MEDI4736: Clinical Data – ASCO 2015

Table6: Tumor response by Subgroups*

	MEDI4736 10mg/kg			
	HPV+	HPV ⁻	Former/current smoker	Never smoker
RECIST response (ORR) ^{±‡} , n/N(%)	1/25 (4)	4/25 (16)	2/39 (5)	5/23 (22)
95% CI	0.1-20.4	4.5-36.1	0.6-17.3	7.5-43.7
DCR 24 weeks ^{±‡} , n/N (%)	1/25 (4)	5/25 (20)	3/39 (8)	6/23 (26)
95% Cl	0.1-20.4	6.8-40.7	1.6-20.9	10.2-48.4

* HPV status was collected at baseline from patient records; [±] ORR (confirmed complete response (CR) and partial response (PR) and DCR (CR+PR+stable disease (SD)≥24 weeks) are based on RECIST v1.1; [‡] There were 2 responders among the 12 patients with unknown HPV status CI, confidence interval; DCR, disease control rate; HPV, human papilloma virus; ORR, objective response rate; RECIST, Response Evaluation Criteria in Solid Tumors

SINGAPORE ESTOPASIA 2015 18-21 DECEMBER SINGAPORE Segal et al, ASCO 2015

ASCO 2015: Advances in Head and Neck Cancer

Durvalumab/MEDI4736: Clinical Data – ASCO 2015

Table5: Tumor Response Overall and by PD-L1 Status

	MEDI4736 10mg/kg			
	All patients (n=62)	PD-L1+ (n=22)	PD-L1 ⁻ (n=37)	
RECIST response (ORR), n/N(%) 95% Cl	7/62 (11) 4.7-21.9	4/22 (18) 5.2-40.3	3/37 (8) 1.7-21.9	
DCR 24 weeks [*] , n/N (%) 95% Cl	9/62 (15) 6.9-25.8	4/22 (18) 5.2-40.3	4/37 (11) 3.0-25.4	
Range of ongoing DoR [±] , weeks	16.1+-55.4+	41.1+-53.1+	16.1+-55.4+	
Ongoing responders, n/N(%)	5/7 (71)	2/4 (50)	3/3 (100)	

- HPV(-) patients seemed to have improved responses over HPV(+) patients
- Durvalumab was safe and tolerable
 - Drug-related AEs: 60%
 - Grade ≥3 drug-related AEs: 7%

Segal et al, ASCO 2015

ASCO 2015: Advances in Head and Neck Cancer

New concepts for HPV+ locally advanced disease

 Low risk disease: substituting chemo with immune checkpoint inhibitors

 Intermediate risk disease: adding immune checkpoint inhibitors to cisplatin-IMRT (RTOG, EORTC)

Conclusions

- Response rates and survival outcomes are clearly better for the HPV positive patients
- Tobacco is a negative prognostic factor in HPVassociated OPC
- At this point these patients should be treated similarly to stage-matched HPV negative patients
- Clinical trials of treatment deintensification are ongoing
- Immunotherapy appears promising in these patients
- We need to enroll patients on clinical trials to address these issues

