

Abstract 1096: Phase II study of AZD4547 in *FGFR* amplified tumours: gastroesophageal cancer (GC) cohort clinical and translational results

Elizabeth Smyth¹, Nicholas Turner^{1,2}, Clare Peckitt¹, Gina Brown¹, Sue Chua¹, Alex Pearson², Anne Thomas³, Ros Cutts², Angela Gillbanks¹, Elaine Kilgour⁴, Neil R. Smith⁴, Clare Rooney⁴, David Watkins¹, Ian Chau¹, Sanjay Popat¹, and David Cunningham¹

¹Royal Marsden, London & Surrey, United Kingdom, ²Institute of Cancer Research, London, United Kingdom ³Leicester Royal Infirmary, Leicester, United Kingdom, ⁴Astra Zeneca, Alderley Park, United Kingdom

National Institute for Health Research

Disclosure slide

• Elizabeth Smyth: No disclosures

FGFR signalling dysregulation is an oncogenic driver in many cancers

Amplification				
FGFR1	ER+ breast cancer (9-23%) SqNSCLC (10-20%)			
FGFR2	Gastroesophageal (9%)			
Fusion				
FGFR2	Cholangiocarcinoma (15%)			
FGFR3	Bladder (6%) Glioblastoma (3-7%)			
Mutation				
FGFR1	Endometrial (12%)			
FGFR3	Bladder (10%-60%)			

Turner N, Grose, R. Nature Reviews Cancer 10, 116-129

AZD4547 is a potent, selective inhibitor of FGFR 1, 2 and 3 receptor tyrosine kinases

FGFR Trial: Study Design

- Phase II, non-randomised study
- 3 independent previously treated advanced disease tumour types
 - oesophagogastric (FGFR2), HER-2 negative breast and squamous NSCLC (FGFR1)

Primary endpoint: objective confirmed response rate in each tumour group

Simon 2 stage design: If \geq 1 response in initial 9 patients per group, then proceed to 17 patients. If \geq 3/17 demonstrate response then further research is indicated

FGFR Study Screening Results: OG cohort

FGFR study: OG cohort patient characteristics

Baseline characteristics (n=9)			
Male:Female	8:1		
Median age (years) Range	64 35-77		
ECOG PS 0-1/2	8/1		
Number prior lines therapy 1/2/>2	5/3/1		
Sites of metastases 1/2/>2	2/5/2		
Site of primary tumour GEJ/Gastric	9/0		

AEs are consistent with known AZD4547 toxicities

Adverse events occurring in >10% of patients							
Toxicity	Grade 1	Grade 2	Grade 3	All grades			
	n (%)	n (%)	n (%)	n (%)			
Fatigue	3 (33%)	2 (22%)	2 (22%)	7 (77%)			
Constipation	3 (33%)	3 (33%)	-	6 (66%)			
Skin changes	-	2(22%)	1 (11%)	3 (33%)			
Mucositis	1 (11%)	1(11%)	1(11%)	3 (33%)			
Eye changes	3 (33%)	-	-	3(33%)			
PPE	1(11%)	2 (22%)	-	3(33%)			
Nail changes	2 (22%)	-	-	2(22%)			
Hyperphosphataemia	2 (22%)	-	-	2(22%)			
Hypertension	1(11%)	1(11%)	-	2 (22%)			
Diarrhoea	1(11%)	-	-	1(11%)			

One patient developed grade 5 febrile neutropenia as a result of marrow failure

One patient developed grade 4 increased LFTS secondary to biliary obstruction

One patient developed asymptomatic retinal pigmented epithelial detachment

Durable responses demonstrated in OG cohort

Efficacy in OG cohort (n=9)			
Complete response	0		
Objective Response (CR + PR)	3 (33.3%)		
Stable disease	2 (22.2%)		
Disease control rate (CR + PR + SD)	55.5%		
Mean duration of response (months)	5.7 (SD 2.4)		
3 patients were inevaluable1 toxicity (recurrent grade 3 rash)			

- 1 withdrew consent
- 1 clinical progressive disease

D14 PET identifies rapid responses in OG patients

FGFR2 CNV in plasma predicts response to AZD4547

High level homogenous *FGFR2* amplification is required for response to AZD4547

Sections were digitally scanned using the x40 objective of a MIRAX Panoramic 250 Flash II (3D Histech)

Tumor was marked and z-stack levels examined for evidence of heterogeneity.

				100µm	Contraction of the second s		- 100µm	
% amplified	14.1	27	28	37	44	94	99	99
FISH ratio MIRAX)	1.1	1.4	1.6	1.9	10	43	30	34
ISH ratio manual)	1.9	2.0	3.3	3.9	12.6	12.0	25.2	35.3
Unamplified	Unamplified tumour cell *No sample available for one responder					e responder		

Correlation between screening FISH and MIRAX ratio is high (r = 0.9963).

FGFR2 Nanostring analysis

- *FGFR2* IIIb and IIIC isoforms demonstrate differential expression in epithelial and mesenchymal tissues and have distinct ligand specificities
- FGFR C3 truncated variant is associated with decreased receptor internalisation leading to constitutive receptor activation
- FGFR2 IIIb and IIIc isoforms and both full length and truncated (C3) FGFR2 expression were examined using Nanostring panel

FGFR2 IIIb vs IIIc isoform expression

- Majority of tumour samples express both *FGFR2* IIIb and *FGFR2* IIIc isoforms
- Non-amplified cell line expresses both FGFR2IIIb and FGFRIIIc isoforms at low levels
- Amplified cell lines demonstrate high expression of both FGFR2 IIIb and FGFR2 IIIc isoforms
- All biopsies from primary gastroesophageal tumour

FGFR2 IIIb + A FGFR2 IIIc + N

Amplified line Non-amplified line Archive

🔺 Progressive disease

Day 0

Dav 14

Full length FGFR2 expression

- Full length FGFR2 was detected in all tumour samples.
- High expression demonstrated in - amplified cell-lines
 - patients 269, 316 (responders)
 - patient 99 (PET response)
- Patient 21 (responder) did not have high level full length FGFR2
- Variable expression in patient 135 tumour samples (heterogenous tumour)

Amplified line

Non-amplified line

Cell line

Patient

Full length vs truncated C3 isoform FGFR2 expression

C3 isoform only present in amplified cell-lines & in patients 21, 269, 316, 99

Cell line Patient Amplified line Non-amplified line

Conclusions

- AZD4547 demonstrated promising activity in *FGFR2* amplified oesophagogastric cancer with significant and durable responses in 33% patients treated on study
- Response was associated with:

High level homogenous *FGFR2* amplification in tissue Presence of *FGFR2* ctDNA in plasma Truncated C3 isoform expression on NanoString

• *FGFR2* copy number gain detected in plasma ctDNA using ddPCR is currently being used to select patients for study entry

Acknowledgements

All the patients and their families

Mater Hospital Brisbane Dr Vikram Jain

Royal Marsden Hospital & Institute of Cancer Research NIHR BRC Gillian Smith, Ruwaida Begum

Astra Zeneca Karina Meachin, Harjit Singh, Donal Landers, Catherine Geh

The ROYAL MARSDEN NHS Foundation Trust

