Adoptive Cell Therapy with Gene-modified T cells

December 20th, 2015

Hiroshi Shiku

Department of Immuno-Gene Therapy
Mie University Graduate School of Medicine
Center for Comprehensive Cancer Immunotherapy
Mie University
Japan

COI Disclosure Information

Hiroshi SHIKU

I have the following financial relationships to disclose.

Grant/Research funding from: Takara Bio Inc.

A Variety of Approaches in Cancer Immunotherapy -Adoptive Cell Therapy-

CAR/TCR gene transfer T cell therapy

ORIGINAL ARTICLE

Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia

Pt with relapsed or refractory ALL: 30Pt.

CR:90%

6 month Event-free survival: 67%

6 month Overall survival: 78%

Maude et al. NEJM 2014

Adoptive T Cell Transfer Using TCR or CAR Gene-Transduced T Cells

Today's Topics

Adoptive Cell Therapy with TCR Engineered T Cells

CAR-T cells for Peptide/MHC complex:

A New Approach of Adoptive Cell Therapy?

Today's Topics

Adoptive Cell Therapy with TCR Engineered T Cells

CAR-T cells for Peptide/MHC complex:

A New Approach of Adoptive Cell Therapy?

A Human CTL Clone #2-28 Specifically Recognizes a MAGE-A4 Antigen-Derived Epitope Peptide in a HLA-A2402-Restricted Manner

Recognition of MAGE-A4₁₄₃₋₁₅₁ epitope peptide (NYKRCFPVI) by CTL clone #2-28 in vitro

Specificity of antigen recognition by CTL clone #2-28 in vitro

Miyahara et al. Clin Cancer Res 2005

TCR Gene-Engineered CD8⁺ T Cells Become Reactive with Target Antigen-Expressing Tumor Cells

Specific cytotoxicity

Target human tumor cells

- **──** 11-18: MAGE-A4(+), A24(+)
- KE-4: MAGE-A4(+), A24(+)
- **QG56: MAGE-A4(+), A24(-)**
- **★** TE-8: MAGE-A4(-), A24(-)

In vivo efficacy (mouse xenograft model)

Shirakura et al. Cancer Sci 2012

18-21 DECEMBER SINGAPORE

MAGE-A4-specific TCR genes

Unmet Medical Need for Recurrent/Metastatic Esophageal Cancer

- ❖ 50% survival in recurrent/ metastatic esophageal cancer, refractory to platinum-based regimen (standard therapy), is approximately 6 months.
- **❖** No other approved options available but Taxanes.

- 1. Less options of effective modalities.
- 2. Far behind compared with colorectal cancer or gastric cancer.
- 3. Squamous cell carcinoma is major in Asia, while adenocarcinoma in US and Europe

Necessity of
(Asian-oriented)
effective
esophageal
cancer therapy

First-in-man trial of adoptive transfer of lymphocytes transduced with MAGE-A4-specific TCR gene for patients with esophageal cancer

1x10⁹ cells infusion for 3 pts

5x10⁹ cells infusion for 3 pts

Cell kinetics, Tissue infiltration

Immune reaction, Tumor response

Patients' Characteristics and Adverse Events after TCR Gene-Engineered Lymphocytes Transfer

Cohort	Cell doses allocated	Patient ID	Age/sex -	MAGE-A4 expressions		Turner legione	Number of IFN-γ+	Adverse
				PCR*	IHC**/57B	Tumor lesions	CD8 T cell infused	events (grade)
1	2x10 ⁸	TCR-MA-102	68/M	2,880	NA	liver	1.46x10 ⁷	none
	2x10 ⁸	TCR-MA-104	56/M	4,847	20%(++)	esophagus	1.24x10 ⁷	none
	2x10 ⁸	TCR-MA-106	73/M	2,215	10%(+)	esophagus, lymph node	1.48x10 ⁷	skin reaction(I)***
2	1x10 ⁹	TCR-MA-208	67/M	7,942	30%(+)	lymph node	6.8x10 ⁷	none
	1x10 ⁹	TCR-MA-209	57/M	1,352	70%(++ or +++)	lymph node	1.3x10 ⁸	none
	1x10 ⁹	TCR-MA-210	54/M	312	30%(+++)	esophagus, lung, lymph node	9.6x10 ⁷	skin reaction(I)***
	1x10 ⁹	TCR-MA-212	43/M	1,765	20%(+)	lymph node	2.6x10 ⁸	skin reaction(I)***
3	5x10 ⁹	TCR-MA-213	68/M	749	NA	lymph node	5.3x10 ⁸	none
	5x10 ⁹	TCR-MA-314	64/M	82	<5%(+)	lymph node	6.6x10 ⁸	none
	5x10 ⁹	TCR-MA-315	57/F	NA	20%(++)	lung, lymph node	9.75x10 ⁸	skin reaction(I)***

^{*} copies numbers amlified by RealTime PCR.

*** skin reactions were related to peptide vaccinations.

^{**} positive percentage and intensity of immunohistochemical staining.

Pharmacokinetics of Transferred TCR Gene-Engineered Lymphocytes in the Peripheral Blood

Long Term Persistence of TCR Gene-Transduced Cells in the Peripheral Blood of 5 Patients

Clinical course of 10 enrolled patients

Novel retrovirus vector that reduce the expression of endogenous TCR ~siTCR vector~

CD3

CD3

CD3

CD3

CD3

CD3 CD3

CD3

Suppression of Endogenous TCR Results in Higher Expression of Transduced MAGE-A4- or WT1-Specific TCR

WT1-specific TCR

Multi-institutional Clinical Trials of Adoptive Cell Therapy ongoing

MAGE-A4 TCR (wild type)

Miyahara et al.

- Targets: Solid tumors (esophageal ca, H&N ca, melanoma, etc.) Clin Cancer Res
- Vector: siTCR vector 2005
- Preconditioning: cyclophosph, fludarabine
- Status: 3 patients administrated

WT1 TCR (wild type)

Targets: AML, MDS

Vector: siTCR vector

- No Preconditioning
- Status: 6 patients administrated

NY-ESO-1 TCR (manipulated for high affinity)

- Targets: Solid tumors (esophageal ca, H&N ca, melanoma, etc.)
- Vector: siTCR vector
- Preconditioning: cyclophosphamide, fludarabine
- Status: 3 patients administrated

Ohminami et al. Blood 2000

Schmid et al.

J Immunol 2010

Today's Topics

Adoptive Cell Therapy with TCR Engineered T Cells

CAR-T cells for Peptide/MHC complex:

A New Approach of Adoptive Cell Therapy?

CAR/TCR gene transfer T cell therapy

Chimeric Antigen Receptor(CAR) that recognizes intracellular antigens

Anti-CD19 CAR therapy is successful.

What is next target?

Our approach:
Develop CARs
that recognize
cell surface
peptide/MHC complex
derived from
intracellular tumor
antigens.

Investigators

Mie Univ. Grad. Sch. Med. Dpt. Immuno-Gene Therapy

Shinichi Kageyama Hiroaki Ikeda Yoshihiro Miyahara Yasushi Akahori **Takuma Kato** Naoko Imai **Naohiro Seo** Naozumi Harada Daisuke Muraoka **Fumiyasu Momose** Hiroaki Ueno **Ayumi Kawamura Yuki Orito Linan Wang** Makiko Yamane Chisaki Hyuga Sahoko Hori Tae Hayashi Kazuko Mori

Mie Univ. Grad. Sch. Med. Hematology & Oncology

Naoyuki Katayama Masahiro Masuya Isao Tawara Mikiya Ishihara

Ehime Univ. Grad. Sch. Med. Hematology

Masaki Yasukawa Hiroshi Fujiwara Nagoya Univ. Grad. Sch. Med. Hematology & Oncology

Tetsuya Nishida Makoto Murata Seitaro Terakura

Fujita Health Univ. Hematology

Norihiko Emi Yoshiki Akatsuka Takara Bio, Inc.

Kazutoh Takesako Junichi Mineno Ikuei Nukaya Sachiko Okamoto Daisuke Tomura

Cent. Inst. Exp. Animal

Mamoru Ito

