New treatment options for NET

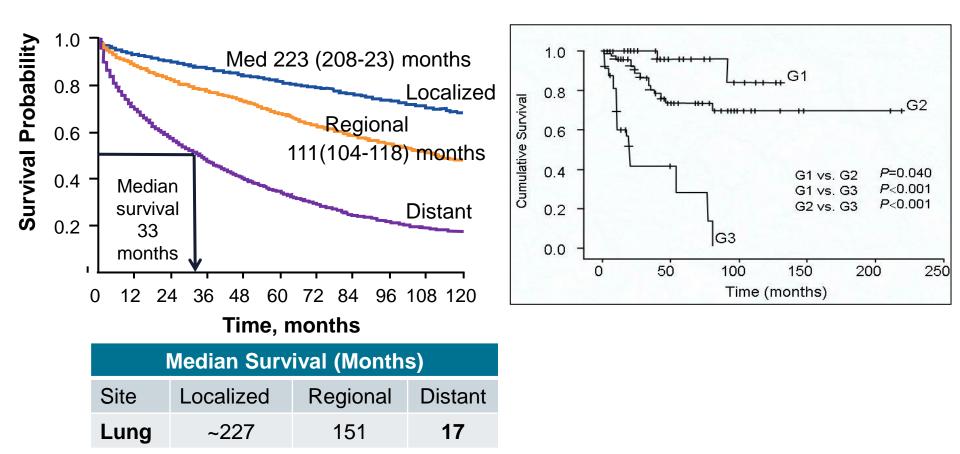
Sun Young Rha, MD, PhD Medical Oncology, Yonsei Cancer Center Songdang Institute for Cancer Research Yonsei University College of Medicine

Disclosure slide

• I have nothing to disclose.

Neuroendocrine Tumors (NET)

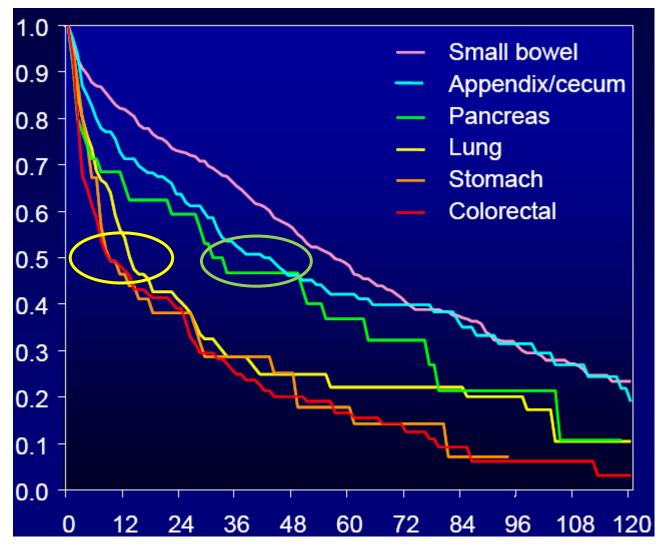
- Heterogenous disease
- Different biology by primary site
- Uncommon disease
- Limited numbers of phase III study
- Treatment mainly based on consensus recommendations of experts



Prognostic factors for treatment decision

- Funtional vs non-functional
- G1/G2 vs G3
- Primary tumor site (pancreatic vs non-pancreatic)
- Localized vs metastatic
- Somatostatin receptor status
- Indolent vs Aggressive

Survival based on stage and grade


Analysis of 35,825 cases of NET identified in the SEER registries (1988-2004)

Yao JC et al. *J Clin Oncol.* 2008;26:3063-3072

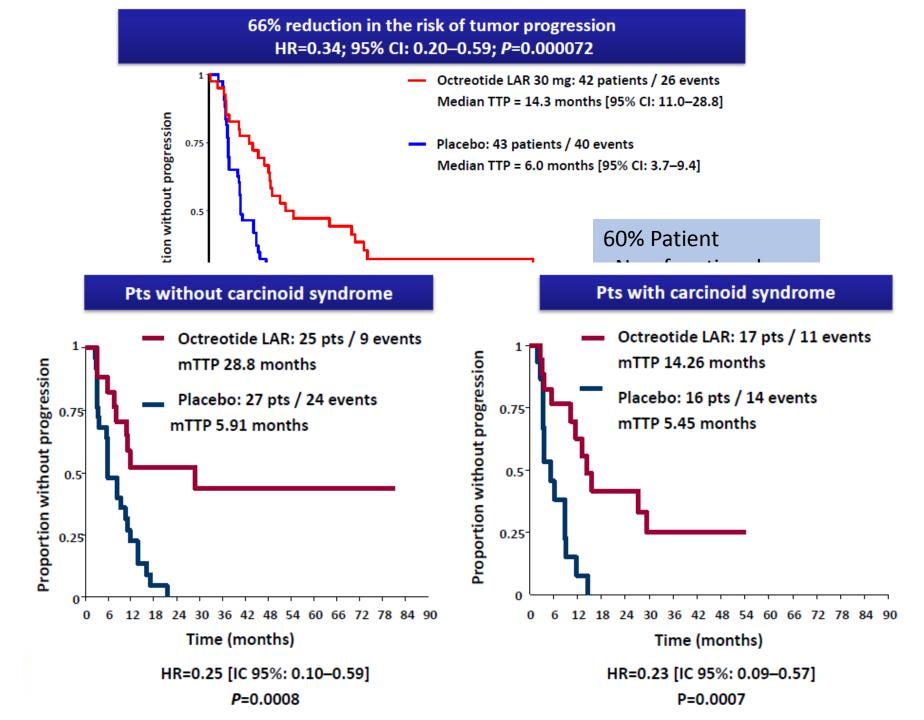
Pape UF et al. Cancer 2008:113:256-265

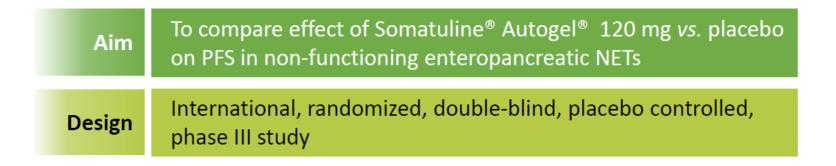
Survival by primary site

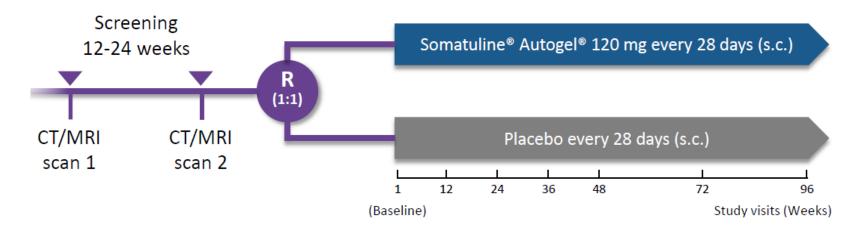
Phase III trials for non-functional, nonpancreatic NET

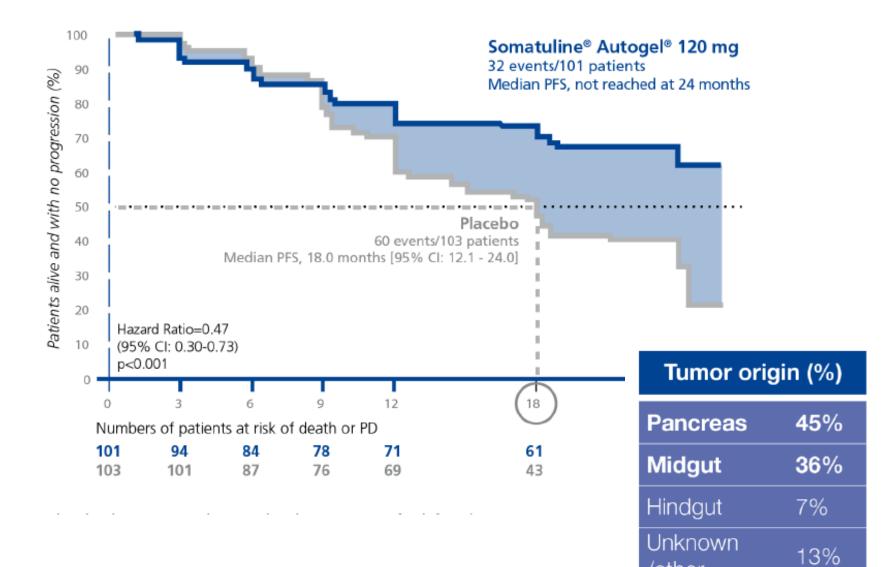
- Somatostatin analogs
 - PROMID study
 - CLARINET study
- Peptide receptor Radionuclide Therapy (PRRT)
 - NETTER-1 study
- Targeted agents
 - SWOG S0518 study
 - RADIANT-4 study

PROMID: Evaluation of the anti-proliferative effect of octreotide LAR


 Phase III randomised, double-blind, placebocontrolled study

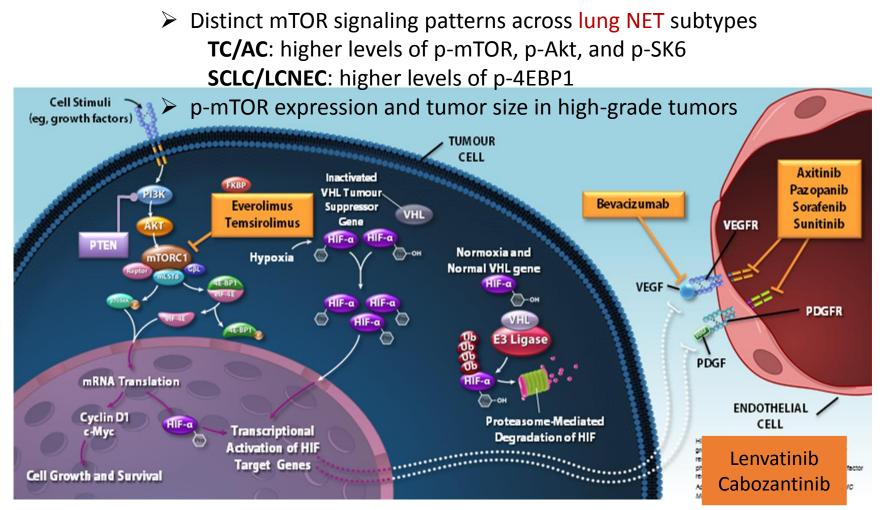

Primary endpoint: time to progression


Secondary endpoint: Objective response rate, OS, QOL, Safety


CLARINET: Controlled study of Lentreotide Antiproliferative Response in NET

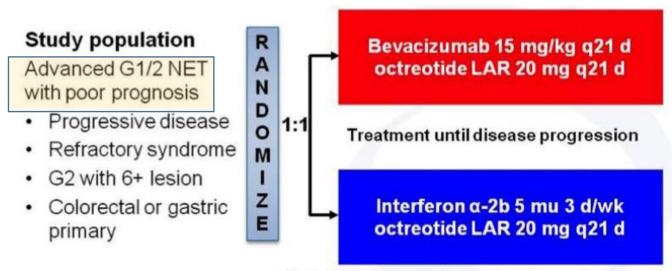
Caplin ME et al. NEJM 2014:371:224

/other


Chemotherapy in Lung NET

- No standard chemotherapy regimen for lung NET¹
 - Data from small studies and retrospective series^{1,2}
 - Primarily cisplatin- or streptozocin-based regimens²
 - Heterogeneous methods used to measure response³
 - Overall, response rates are discouraging: ~14% to 30%⁴⁻⁶
 - Advanced lung NET generally resistant to streptozocin-based therapies^{1,3}
- Several chemotherapeutic agents with moderate efficacy
 - Temozolomide, cisplatin, etoposide, capecitabine, and oxaliplatin¹
 - Cisplatin + etoposide effective in high proliferating lung NET tumors^{3,7,8}
 - Capecitabine + temozolomide under evaluation in a phase II study in patients with metastatic NET, including lung NET (NCT00869050)

^{1.} Horsch D et al. Oncol Res Treat. 2014;37:266-276; 2. Kosmidis PA. Curr Opin Oncol. 2004;16:146-149; 3. Granberg D et al. Ann Oncol. 2001;12:1383-1391; 4. Gustafsson BI et al. Cancer. 2008;113:5-21; 5. Ekeblad S et al. Clin Cancer Res. 2007;13:2986-2991; 6. Crona J et al. Neuroendocrinology. 2013;98:151-155; 7. Oberg K et al. Ann Oncol. 2012;23(suppl 7):vii120-vii123; 8. Fjajllskog ML et al. Cancer. 2001;92:1101-1107.



Targeted Therapies in NET

- TOR pathway activation is observed with genetic cancer syndromes associated with pNET: TSC2, NF1, VHL
 - AC, atypical carcinoid; LCNEC, large cell neuroendocrine carcinoma; SCLC, small cell lung carcinoma; TC, typical carcinoid.
 - 1. Righi L, et al. Endocr Relat Cancer 2010;17:977–987; 2. Ali G, et al. Exp Ther Med 2011;2:787–792.

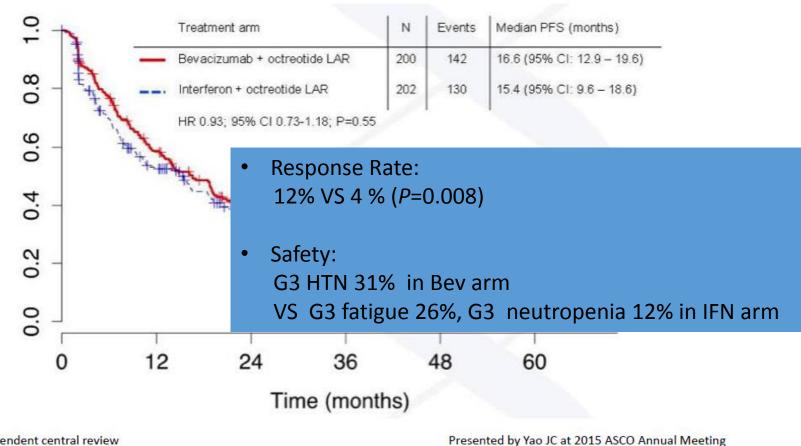
SWOG S0518 : Phase III prospective randomized comparison of depot octreotide plus interferon alpha-2b versus depot octreotide plus bevacizumab in advanced, poor prognosis carcinoid patients.

Multiphasic CT or MRI performed every 9 wk

Primary endpoint:

PFS (Central radiology review)

- Changing statistical assumption PFS :6m-> 9m to PFS' : 15 m-> 21m
- Good prognostic group?


Stratification factors:

- Primary site: Midgut vs others
- RECIST PD since diagnosis
- Histologic grade: G1 vs G2
- Octreotide 2 months prior to registration

Presented by Yao JC at 2015 ASCO Annual Meeting

SWOG S0518 : PFS by central review

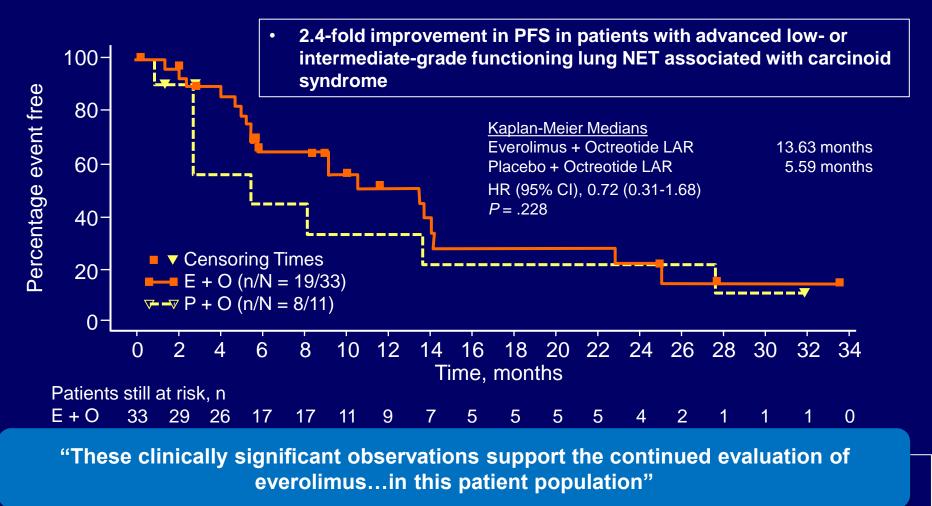
ICR, independent central review

RADIANT-2 Study Design

Phase III Double-blind Placebo-Controlled Trial

Patients with advanced **NET** and a history of Everolimus 10 mg/day + secretory symptoms Octreotide LAR 30 mg g28d (N = 429)n = 216R Advanced low- or intermediate-Α grade NET Ν Crossover at time of Radiologic progression within 1:1 D Treatment until disease 12 months 0 disease progression History of secretory symptoms Μ progression (flushing, diarrhea) Ζ Prior antitumor therapy allowed Placebo + Ε WHO PS ≤2 Octreotide LAR 30 mg q28d n = 213

Multiphasic CT or MRI performed every 12 weeks


CT = computed tomography; MRI = magnetic resonance imaging; WHO PS = World Health Organization performance status

Pavel M, Hainsworth J, Baudin E, et al. Lancet. 2011;378(9808):2005-2012.

Fazio N. et al. Chest. 2012.

•

PFS per Central Radiology Review in Patients with Primary Lung NET

P value obtained from the 1-sided log-rank test. HR obtained from unadjusted Cox model.

Fazio N, et al. Chest. 2013;143:955-62.

- Sample size (n = 44)
- Imbalance in number of patients (3× more patients treated with everolimus than with placebo)

RADIANT-4: Efficacy and Safety of Everolimus in Advanced, Nonfunctional Neuroendocrine Tumors (NET) of the Lung or Gastrointestinal (GI) Tract

J.C. Yao,¹ S. Singh,² E. Wolin,³ M. Voi,⁴ L.B. Pacaud,⁵ J. Lincy,⁵ C. Sachs,⁵ J. W. Valle,⁶ E. van Cutsem,⁷ Y. Shimada,⁸ <u>D.-Y. Oh</u>⁹

¹University of Texas/MD Anderson Cancer Center, Houston, Texas, USA; ²Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ³Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA; ⁴Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA; ⁵Novartis Pharma AG, Basel, Switzerland; ⁶Institute of Cancer Studies, University of Manchester, The Christie Hospital, Manchester, United Kingdom; ⁷Digestive Oncology, University Hospitals Gasthuisberg/Leuven and KULeuven, Leuven, Belgium; ⁸National Cancer Center Hospital, Tokyo, Japan; ⁹Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.

On behalf of the RADIANT-4 Study Investigators

The Lancet 2015 Dec 15th

RADIANT-4 Study Design

Patients with welldifferentiated (G1/G2), advanced, progressive, nonfunctional NET of lung or GI origin (N = 302)

- Absence of active or any history of carcinoid syndrome
- Pathologically confirmed advanced disease
- Enrolled within 6 months from radiologic progression

Endpoints:

- Primary: PFS (central)
- Key Secondary: OS
- Secondary: ORR, DCR, safety, HRQoL (FACT-G), WHO PS, NSE/CgA, PK

Stratified by:

Everolimus 10 mg/day

N = 205

Placebo

N = 97

• Prior SSA treatment (yes vs. no)

Treated until PD,

intolerable AE, or

consent withdrawal

- Tumor origin (stratum A vs. B)*
- WHO PS (0 vs. 1)

*Based on prognostic level, grouped as: Stratum A (better prognosis) - appendix, caecum, jejunum, ileum, duodenum, and NET of unknown primary. Stratum B (worse prognosis) - lung, stomach, rectum, and colon except caecum. Crossover to open label everolimus after progression in the placebo arm was not allowed prior to the primary analysis.

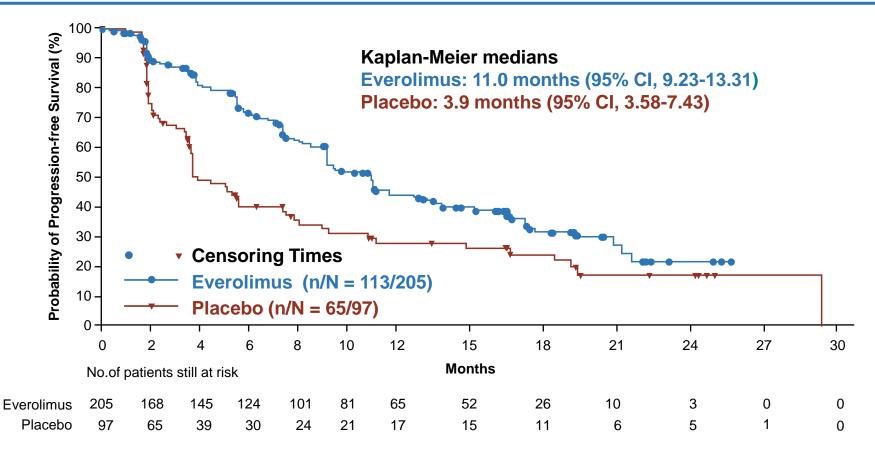
R A

N D

0

Z E 2:1

Baseline and Disease Characteristics


Characteristic	Everolimus N = 205	Placebo N = 97
Primary tumor site		
Lung	31%	28%
lleum	23%	25%
Rectum	12%	16%
Jejunum	8%	6%
Stomach	3%	4%
Duodenum	4%	2%
Colon	2%	3%
NET of unknown primary	11%	13%
Tumor grade		
Grade 1 / grade 2	63% / 37%	67% / 33%

Prior treatments		
Somatostatin analogues	53%	56%

Primary Endpoint: PFS by Central Review

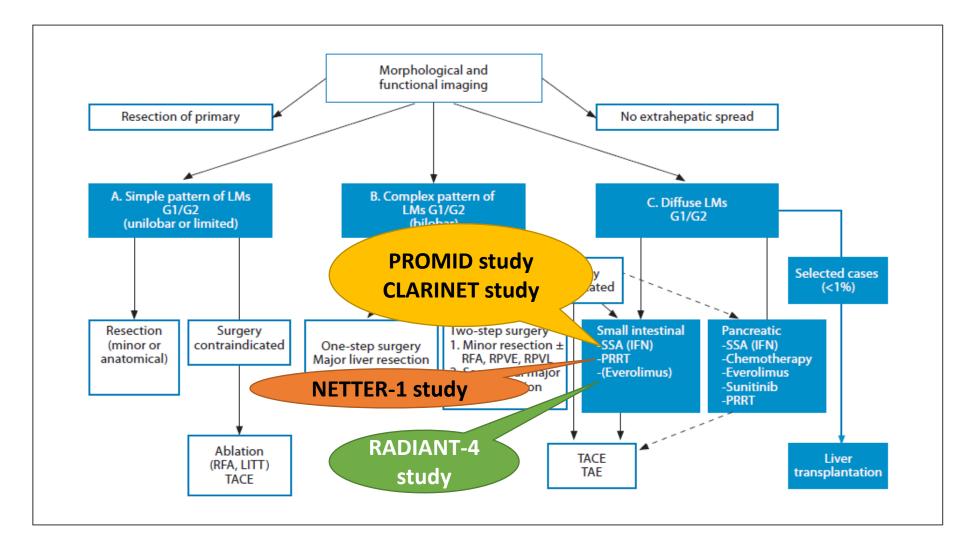
52% reduction in the relative risk of progression or death with everolimus vs placebo HR = 0.48 (95% Cl, 0.35-0.67); P < 0.00001

P-value is obtained from the stratified one-sided log-rank test; Hazard ratio is obtained from stratified Cox model.

Consistent PFS HR by Stratification Factors, Central Review

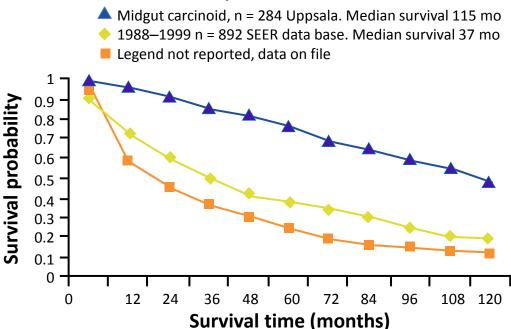
Subgroups	No.	Hazard Ratio (95% CI)	
Prior SSA treatm	ent		
Yes	157	I	0.52 (0.34-0.81)
No	145		0.60 (0.39-0.94)
Tumor origin*			
Stratum A	153		0.63 (0.40-1.02)
Stratum B	149	_	0.43 (0.28-0.66)
WHO PS			
0	216	_	0.58 (0.41-0.84)
1	86	—	0.50 (0.28-0.91)
	[]
	0.1 🔶	0.4 1	10
	`E	Everolimus Better	Placebo Better

*Based on prognostic level, grouped as:


Stratum A (better prognosis) - appendix, caecum, jejunum, ileum, duodenum, and NET of unknown primary). **Stratum B** (worse prognosis) - lung, stomach, rectum, and colon except caecum).

Conclusion

- Everolimus is the first drug to show a significant activity in lung NETs in a randomized trial -> Practice changing
- Everolimus is effective in grade 1 or 2 NET, in spite of primary tumor site with tolerable toxicity.
- We have new therapeutic options in non-functional NETs
 - Octreotide: midgut NET
 - Lanreotide: indolent, GEP-NET
 - Everolimus, Sunitinib: Pancreatic NET
 - Everolimus: Advanced GI/Lung NET (RADIANT-4)



Marianne Pavel et al. Neuroendocrinology 2012

Multidisciplinary Team Care Improves Patient Survival

- MDT care is strongly advised in NET³
- Consultation with multiple specialists may result in fragmented care
- Advantages of using an MDT¹
 - Accurate diagnosis/staging
 - Evaluation of PS and QoL
 - Consensus regarding care plan
 - Cohesive delivery of support, therapy, and prognosis to patient
 - Continuous reassessment, discussion, review of care plan

Data From Centers of Excellence vs Nonspecialist Centers²

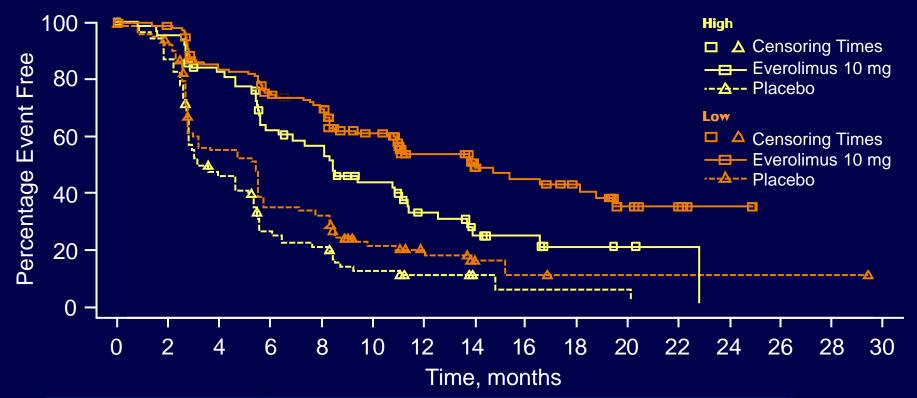
MDT, multidisciplinary care; PS, performance status; QOL, quality of life.

1. Tamagno G et al. *Endocrine* 2013;44(2):504-509. 2. Reproduced from de Herder WW, et all. Tumori. 2010;96(5):833-846. 3. NCCN Clinical Practice Guidelines in Oncology. Neuroendocrine Tumors. Version 1. 2015

Biomarker study from RADIANT-3 (Everolimus vs BSC in pNET, n=410)

Prolongation of PFS with Everolimus by Baseline CgA or NSE Levels: Prognostic

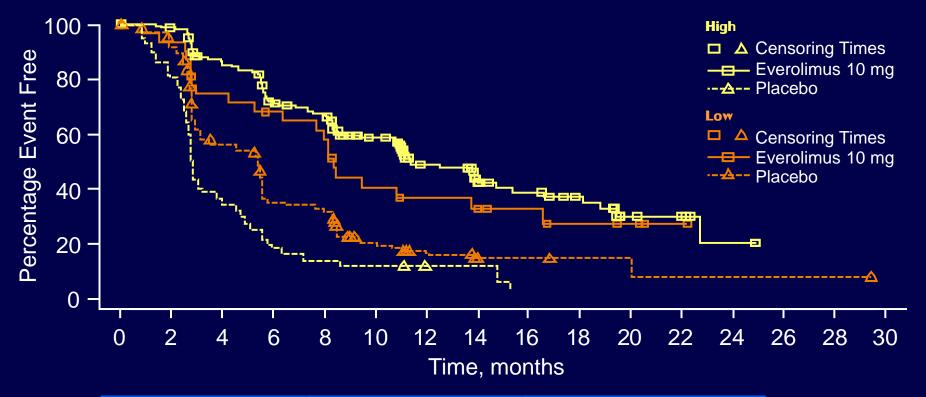
Bonulation	Median PFS, months		Hazard Ratio	P
Population	Everolimus	Placebo	(95% CI)	Р
Overall	11.0	4.6	0.35	<.0001
Overall	n = 207	n = 203	(0.27-0.45)	<.0001
Elevated CgA (>2 × ULN)				
Vac	8.5	4.3	0.31	<.001
Yes	n = 84	n = 103	(0.21-0.46)	
No	11.2	4.9	0.38	<.001
INO	n = 121	n = 97	(0.27-0.53)	
Elevated NSE (>1 × ULN)				
Yes	8.1	2.8	0.35	<.001
	n = 48	n = 56	(0.21-0.59)	<.001
No	13.9	5.4	0.34	- 001
	n = 155	n = 138	(0.25-0.47)	<.001


Prognostic Value of Angiogenesisrelated Biomarkers

Marker	Cuttoff ¹	Median PFS ² Low vs. High (months)	Prognostic Hazard Ratio (95% CI)	<i>P</i> Value
VEGF-A	246.1	8.3 vs 5.5	1.50 (1.17-1.92)	<.001
PIGF	32.1	8.0 vs 4.2	1.52 (1.14-2.02)	.004
sVEGFR1	226.2	8.3 vs 5.5	1.62 (1.27-2.07)	<.001
sVEGFR2	24503.1	10.8 vs 5.7	1.30 (0.96-1.76)	.090

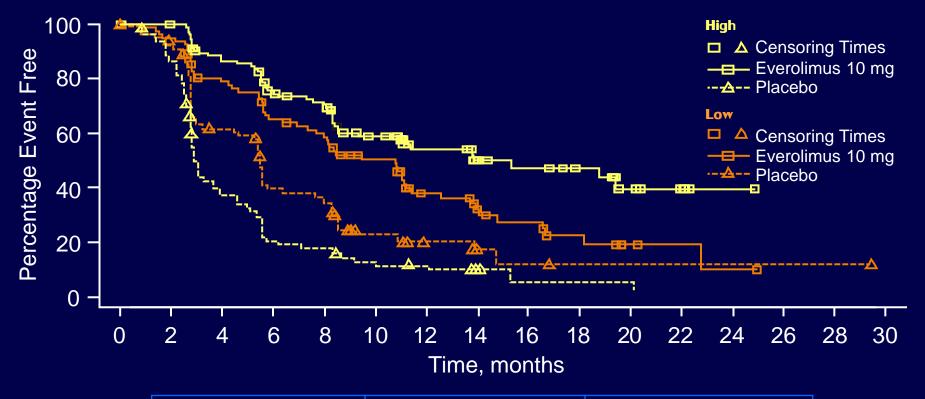
¹Cutoff determined by survival tree method in pg/mL. ²PFS from patients pooled from both arms.

Yao, et al. Annals of Oncology. 2012; Vol.23 Supplement 9-September: p.7-30


VEGF-A: Treatment Effect

	High		Low	
	Everolimus n/N = 43/65	Placebo n/N = 73/84	Everolimus n/N = 61/133	Placebo n/N = 85/111
Median PFS (months)	8.4	3.3	14.0	5.4
Hazard ratio (95% CI)	0.40 (0.27-0.59)		0.34 (0.24-0.48)	
Log-rank P value	<.0001		<.0	001

Yao, et al. Annals of Oncology.2012; Vol.23 Supplement 9-September: p.7-30


PIGF: Treatment Effect

	High		Low	
	Everolimus n/N = 21/33	Placebo n/N = 41/44	Everolimus n/N = 83/165	Placebo n/N = 117/151
Median PFS (months)	8.3	2.8	11.4	5.4
Hazard ratio (95% CI)	0.34 (0.20-0.59)		0.37 (0.28-0.49)	
Log-rank P value	<.0001		<.(0001

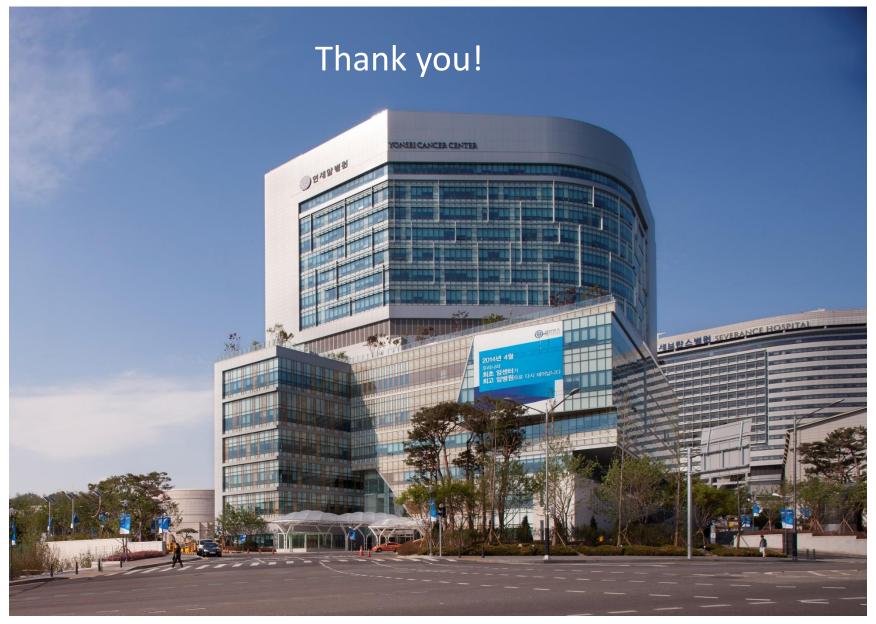
Yao, et al. Annals of Oncology.2012; Vol.23 September: p.7-30 -Supplement 9

sVEGFR1: Treatment Effect

	High		Low	
	Everolimus n/N = 56/86	Placebo n/N = 76/86	Everolimus n/N = 48/112	Placebo n/N = 82/109
Median PFS (months)	10.8	2.2	13.9	5.5
Hazard ratio (95% CI)	0.36 (0.25-0.51)		0.35 (0.24-0.50)	
Log-rank P value	<.0001		<.0	001

Yao, et al. Annals of Oncology.2012; Vol.23 September: p.7-30 -Supplement 9

Predictive Value of Biomarkers


Marker	Treatment Effect	Marker Effect	Interaction of Marker and Treatment
VEGF-A	<0.001	0.036	0.429
PIGF	<0.001	0.006	0.503
sVEGFR1	<0.001	0.003	0.887
sVEGFR2	<0.001	0.307	0.684

Yao, et al. Annals of Oncology.2012; Vol.23 September: p.7-30 -Supplement 9

Next step

- Biomarkers for selecting the proper patient
- Ongoing trials with angiogenesis inhibitors
- Combination vs sequential
 ✓ CALGB 80701(RPII) in pNET trial (ASCO 2015)

