Geographic Variations in Response and Toxicity of Anticancer Agents

Alex A. Adjei
Roswell Park Cancer Institute
Buffalo, NY

Japan-SWOG "Common Arm Analysis" of Paclitaxel/Carboplatin Therapy in Advanced NSCLC: A Model for Prospective Comparison of Cooperative Group Trials

D. R. Gandara, Y. Ohe, K. Kubota, Y. Nishiwaki, Y. Ariyoshi, N. Saijo, S. Williamson, P. N. Lara, J. Crowley, M. Fukuoka; *University of California Davis Cancer Center, Sacramento, CA; FACS Cooperative Group, Tokyo, Japan; Southwest Oncology Group (SWOG), San Antonio, TX*

SWOG 0003: Phase III Trial of Paclitaxel/Carboplatin +/- Tirapazamine in Advanced NSCLC

→ Paclitaxel/Carboplatin

→ Paclitaxel/Carboplatin + Tirapazamine

Paclitaxel: 225 mg/m2 & Carboplatin: AUC = 6

Tirapazamine: 260 (1st cycle) \rightarrow 330 mg/m2

Four Arm Cooperative Study (FACS) in Advanced NSCLC

- → Irinotecan/Cisplatin
- → Paclitaxel/Carboplatin
- → Gemcitabine/Cisplatin
- → Vinorelbine/Cisplatin

Paclitaxel: 200 mg/m2 & Carboplatin: AUC = 6

Toxicity Analysis

	FACS (N=145)	S0003 (N=186)	p value
Neutropenia (gr 4)	102 (69%)	48 (26%)	<0.0001
Febrile Neutropenia (gr 3-4)	26 (18%)	6 (3%)	<0.0001
Anemia (gr 3-4)	22 (15%)	12 (6.5%)	0.010
Platelets (gr 3-4)	16 (11%)	14 (8%)	0.270
Myalgias (gr 3-4)	3 (2%)	11 (6%)	0.084
Neuropathy (gr 3-4)	5 (3%)	30 (16%)	0.001

Treatment Delivery

	FACS	S0003	p value
Cycles delivered (median)	3	4	NA
% receiving > 3 cycles	35 (24%)	100 (54%)	<0.0001
% receiving 6 cycles	16 (11%)	68 (36.5%)	<0.0001
% patients dose reduced	pending	26%	

Efficacy

	FACS (N=145)	S0003 (N=182)	p value
Complete Response (CR)	1 (0.7%)	3 (1.6%)	0.27
Partial Response (PR)	46 (31.7%)	59 (32.4%)	0.89
CR + PR	47 (32%)	62 (34%)	0.75
MST (months)	12	9	NA
1 year survival	51%	37%	0.009

CONCLUSION

 Variable results are not due to study design or conduct

 Variable results may be due to biologic and/or environmental differences

Pharmacogenetics

- Inherited variations in genes encoding:
 - Drug targets
 - Transport proteins
 - Metabolic enzymes
- And their contribution to the toxicity and/or efficacy of therapeutic agents.

Human Genetic Variation

- Each human person carries millions of normal variations in our DNA
 - Germline = inherited
 - Common variations = polymorphism
 - Stable in person during lifetime
 - except in reproductive organs and with errors in cell division (e.g. cancer)
 - Each parent passes ½ of their variations to their children

Human Genetic Variation

.1 SNP in every 500-1000 nucleotides

Homo sapiens 99.6-99.8% identical

Human variation $\sim 0.2 - 0.4\%$ (3 billion nucleotides) gives ~ 10 million DNA variants

.10% variation between population groups gives 1 million DNA variants

Single Nucleotide Polymorphisms

• A Single substitution in the DNA sequence

- $A \rightarrow C$
- $A \rightarrow T$
- $A \rightarrow G$

Insertion (Deletion)

VNTR (Variable Number Tandem Repeats) Microsatellite

Copy Number Variants

 A duplication or deletion involving > 1kb of DNA

• If > 1% in reference population, Copy Number Polymorphism

- Non-homologous end joining
- Non allelic homologous recombination
- Can affect expression levels, function

Polymorphisms can alter function through multiple mechanisms

Promoter Exon Intron UTRs

Conformational change Binding site change Early termination

Polymorphisms can alter function through multiple mechanisms

mRNA Transport guidance

Pharmacogenetics and FDA

Genes involved in PK

Drug Absorption/Transport Activation/Metabolism/Excretion

Genes involved in PD

Drug mechanism of action. targets/downstream effectors

Hematology/OncologyDrugs with FDA label modifications

<u>Drug</u>	Genetic Variation	Involved in:	<u>Outcome</u>
6MP and AZA	TPMT	PK	Toxicity
Irinotecan	UGT1A1	PK	Toxicity
Coumadin	CYP2C9 & VKORC1	PK and PD	Toxicity
Tamoxifen	CYP2D6	PK	Efficacy

Modification

Conjugation

Tamoxifen

Approved since 1970s

Used widely in breast cancers metastatic, adjuvant, prevention

Complex metabolic pathway

Difficult to directly measure drug effects

Distribution of CYP2D6 alleles in different populations

Population	n	*4	*10	*17	Duplication
European Caucasians	589	0.207	0.015		0.021
American Caucasians	464	0.181	0.040		
Turkish	404	0.113	0.061	0.001	0.008
Chinese	127	0.012	0.700		
Japanese	206		0.386		0.01
Malays	107	0.028	0.495	0.005	
Koreans	212		0.463		0.01
Ethiopians	122	0.012	0.086	0.09	0.136
Tanzanians	106	0.009	0.038	0.17	0.042
Zimbabwean	80	0.025	0.056	0.34	0.025

Bradford et al. Pharmacogenomics 2002, 3: 229-43 Lim et al. J Clin Oncol 2007, 25: 3837-45

CYP2D6 variant genotype and CYP2D6 inhibitors lower Endoxifen levels

Figure 3

A Trial where Tamoxifen Outcomes and Germline DNA were collected: NCCTG 89-30-52

5 years total therapy

Relapse-free Survival

CYP2D6 and tamoxifen

Convincing association between *CYP2D6* genotype/phenotype with tamoxifen-related outcome

CYP2D6 testing commercially available

Proposal to update tamoxifen label to incorporate *CYP2D6* testing

No clinical guidelines or algorithm on management of patients with intermediate or poor metabolizer phenotypes

- Increase dose?
- Use alternative agent (eg aromatase inhibitor)?

Metabolism of Tamoxifen

Bridging studies

- Supplemental study performed in the new region to provide pharmacodynamic or clinical data on efficacy, safety, dosage, and dose regimen in the new region that will allow extrapolation of the foreign clinical data to the new region
- Additional pharmacokinetic information may be included

Pharmacogenomics

The convergence of advances in pharmacogenetics and human genomics

Incorporating Pharmacogenomics into Clinical Care

Ethnic sensitivity (FDA E5)

- Nonlinear pharmacokinetics
- Steep dose-response curve for efficacy and safety
- Narrow therapeutic window
- Highly metabolized, especially through a single pathway(drug-drug interaction)
- Metabolism by enzymes known to show genetic polymorphism
- Prodrug, with the potential for ethnically variable enzymatic conversion
- High intersubject variation in bioavailability
- Low bioavailability, thus more susceptible to dietary absorption effects
- High likelihood of use in a setting of multiple comedications
- High likelihood for inappropriate use e.g., analgesics and tranquilizers

Issues in using race/ethnicity to study drug response

- Social, cultural and political classification
- Correlation with geographical location
- Correlation with population genetic structure (ancestry)
- Issues of self reporting
- Population admixture
- Do genetic factors affect ethnic/racial groups similarly?