# **Discussion for abstract 3570**

The tumor vascularity and lipiodol deposition predicts risk of disease progression after TACE in patients with unresectable HCC. Hai –Liang Li et al.

> Hyun Cheol Chung, M.D., Ph.D. Yonsei Cancer Center Yonsei University College of Medicine Seoul, Korea



# Disclosure

- Research fund, material: Lilly, Merck, GSK
- Advisor: Merck, Lilly, Celltrion, Taiho, Quintiles



# Aim of the study

- BCLC stage B HCC is treated with TACE.
- Early studies did not support the hypothesis that lipiodol deposition is a predictor of overall survival (OS)
- In this study, the **prognostic value** of **tumor vascularity and lipiodol deposition** as well as other risk factors on **OS and TTP** were evaluated in BCLC B and C patients.
  - Single institution, retrospective study



- **cTACE**: standard of care with level 1 evidence
  - TACE + embolization > TACE in OS
  - No other technology of TACE is superior to cTACE

## **Discordance in data:**

- Difference in patient population
- Difference in cTACE technology
- Difference in efficacy evaluation
- Small number of patients
- Short follow-up duration
- Retrospective study

# **Baseline characteristics of subjects**

|                           | Subjects with good blood<br>supply (n=101) | Subjects with poor lipiodol<br>deposition (n=73) |
|---------------------------|--------------------------------------------|--------------------------------------------------|
| Gender                    |                                            |                                                  |
| Male                      | 88(87.13%)                                 | 62(84.93%)                                       |
| Female                    | 13(12.87%)                                 | 11(15.07%)                                       |
| Age (years) Median        | 57.35±11.71                                | 57.01±12.01                                      |
| Tumor size (cm)           | 8.2±4.63                                   | 8.41±5.11                                        |
| Number of nodules         | 3.05±3.66                                  | 3±2.75                                           |
| Child Pugh score          | 5.54±0.88                                  | 5.44±0.86                                        |
| AFP                       | 614.74±561.79                              | 598.82±534.36                                    |
| ECOG performance G        | roup % 0.45±0.5                            | 0.52±0.5                                         |
| No. of TACE<br>procedures | 2.74±1.19                                  | 2.49±0.97                                        |
| BCLC stage                |                                            |                                                  |
| В                         | 63(62.38%)                                 | 40(54.79%)                                       |
| С                         | 38(37.62%)                                 | 33(45.21%)                                       |
| SINGAPORE ESVOASIA        | 18-21 DECEMBER<br>SINGAPORE                |                                                  |

## Intermediate/advanced HCC

|   | <b>Tumor size (cm)</b>       | 8.2±4.63 cm      | 8.41±5.11 cm              |
|---|------------------------------|------------------|---------------------------|
| , | Complete necrosis by size: • | 2 TACEs for co   | mplete necrosis           |
|   | < 2 cm: 69%                  | single session   | $-4.6 \pm 1.8$ cm         |
|   | 4~5 cm: 68%                  | subsequent sessi | $6.3 \pm 2.6 \mathrm{cm}$ |
|   | >6 cm : 13%                  | non-response     | $7.4 \pm 4.4 \text{ cm}$  |
|   |                              |                  |                           |

> 5cm : rarely achieved compact lipiodolization
 → combined with RT, RFA
 5-7 cm: TACE + RT vs TACE → 2-yr OS: 63% vs 42%

Peng et al. JC0 2013



# Multiplicity

#### Number of nodules

#### 3.05±3.66



#### **Retrospective study (n=490)**

single HCC 33.7% multiple HCC 14.6%

SINGAPORE

2015



18-21 DECEMBER

SINGAPORE

Kim et al. AP & T 2012

# Inclusion criteria and Exclusion criteria

**Inclusion criteria** 

- (1) Diagnosis of HCC (BCLC stage B or C)
- (2) Child-Pugh grade A or B
- (3) ECOG score of 0 or 1
- (4) Received at least two cycles of TACE



- (1) Previous treatment with microwave ablation, radiofrequency ablation, surgical resection or liver transplantation after TACE
- (2) Platelet count  $< 50 \times 10^9/L$



# **Multiple TACEs**

| No. of TA<br>procedu         | ACE<br>res             | <b>2.74</b> ±1 | 1.19                                |    | 2.49±0.97                                  |  |
|------------------------------|------------------------|----------------|-------------------------------------|----|--------------------------------------------|--|
| • Georgia                    | • Georgiades et al. Re |                | trospective study (n=116), at least |    | at least 2 TACE                            |  |
|                              |                        | EAS            |                                     | n  | nRECIST                                    |  |
| 1 <sup>st</sup> No responder |                        | 45%            |                                     |    | 50%                                        |  |
| 2 <sup>nd</sup> resp         | oonder                 | 44%            | )                                   |    | 47%                                        |  |
| Group                        | 1-year OS              | 2-year OS      | 3-year                              | OS |                                            |  |
| R1                           | 66 ± 6                 | 41 ± 6         | 25 ±                                | 6  |                                            |  |
| N1                           | 53 ± 7                 | 31 ± 7         | 19 ±                                | 6  |                                            |  |
| P value                      | .16                    | .28            | .49                                 |    | 0.4 - ', ''''''''''''''''''''''''''''''''' |  |
| N1R2                         | 68 ± 10                | 50 ± 11        | 37 ±                                | 11 |                                            |  |
| N1N2                         | <b>39 ± 10</b>         | 14 ± 7         | .0*                                 |    |                                            |  |
| P value                      | .036                   | .006           | <.00                                | 5† | 0 500 1000 1500 2000                       |  |



# **TACE effect evaluation**

- after 24 hours : by non-enhanced multi-slice detect CT (MDCT) homogenous **lipiodol retention**
- after 4 weeks: : by contrast enhancement CT non-enhancing area + oil retension area: necrosis residual tumor vascularization
- Pre-treatment : vascularity evaluation post-treatment : degree of lipiodol uptake





# **Angiography:** golden standard for tumor vascularity evaluation

- Intra-procedure imaging
- mesenteric celiac angio: detect branch to extra-hepatic structure detect extra-hepatic collaterals
- 3D angio combined with MDCT
- Delivery of treatment by continuous visualization
  - targeting and distribution
  - non-target distribution

confirm by CT(after 24 hours)



## **Follow-up TACE (> 4 weeks)**

- gelatin sponge: re-cannalisation within 1-2 weeks, absorbed after 1 month
- lipiodol is gradually washed out in neovascularized tumor portion (  $\approx$  4 weeks)
- Resuming of normal attenuation value in surrounding normal tissue: 1 month
- viable tumor re-growth: after 3-4 months



### Vascularity evaluation

- hypervascularity : enhance than adjacent liver tissue or more than 50% hypervascularity
- hypovascularity : equal to adjacent liver or

less than 50% hypervascularity

### Response criteria:

- decrease to < 25%: successful
- decrease to > 25%: partial

Wober et al. Clin Hemorheo Microcirc 2014



# **Golden standard: hepatic angiography**

- Dynamic MRI : prospective (n=37) <u>Yamashita et al. Acra Radiol 1993</u>
- Power doppler sonography (PDS): prospective (n=43), depth < 7cm

Hosoki et al. Acta Radiol 1999

• Dynamic susceptibility contrast enhanced MRI (DSC-MRI): prospective (n=17) heterogenous enhancement

Tsui et al. Clinical Imaging 2000

• Multiphase helical CT: prospective (n=72)

Ebied et al. Cancer 2002

• Levovist power dopper U/S (Levovist US): prospective (n=46)

Vallone et al. Anticancer Res 2003

• Contrast enhanced U/S: prospective (n=29)

Kim et al. J Ultrasound Med 2006

- Contrast enhanced U/S (CEUS) with multi-slice detection CT (MDCT) prospective (n=40) <u>Wober et al Clin Hemorheo Microcirc 2014</u>
- First-pass perfusion-weighted MRI (FP-MRI)

# Dynamic CT (MDCT) and MRI: preferred as the golden standard for response evaluation after TACE

## **Tumor response evaluation**

**EASL** : surface of viable part of tumor

mRECIST: arterially enhanced part (devascularization)



Choin FASD mR 18 21 SECEMBRIE CIST 1.1 SINGAPORE

Ronot et al The Oncologist, 2014

# **Tumor necrosis and size change**

- reduction of diameter (>30%, PR) or SD with necrosis (>50%)

Kim et al. Radiol 2010

• 1997-2009: retrospective study (n=50): Response depends on vascularity

- hypervascular tumor : 85% responsive hypovascular tumor : 10% responsive

#### • Lipiodol uptake: Survival depends on lipiodol uptake

|           | 1-yr OS | 2-yr OS | 5-ys OS |
|-----------|---------|---------|---------|
| compact   | 92.7%   | 70.7%   | 52.4%   |
| incompact | 60.8%   | 28.0%   | 16.9%   |

Kim et al. AP & T 2012





### • Ebied et al:

SINGAPORE 2015

#### based on both vascularity and responsiveness

| OS<br>(Mo) | Hypervascular<br>responders<br>(n = 34) (%) | Hypervascular<br>nonresponders<br>(n = 28) (%) | Hypovascular<br>responders<br>(n = 4) (%) | Hypovascular<br>nonresponders<br>(n = 6) (%) |
|------------|---------------------------------------------|------------------------------------------------|-------------------------------------------|----------------------------------------------|
| 6          | 34(100)                                     | 25(89)                                         | 4(100)                                    | 5(83)                                        |
| 12         | 28(82)                                      | 18(44)                                         | 2(50)                                     | 0(0)                                         |
| 18         | 16(47)                                      | 4(14)                                          | 2(50)                                     | 0(0)                                         |
| 24         | 9(27)                                       | 3(11)                                          | 1(25)                                     | 0(0)                                         |









- Absence of lipiodol deposition
  - missing feeding vessel
  - extra-hepatic collaterals
    - radioembolization
    - systemic therapy
    - supportive care

 Hypervascular tumor: TACE is effective
 Hypovascular tumor: RFA, ethanol
 → Combination with TACE



# **Stopping rules** (shift to other treatment)

#### Number of TACE correlated with decreased risk of progression

- Most common causes of stopping sequential TACE:
- diminished hepatic function reserve
- marked reduction of general health status

### Stopping rule

- absence of response in 2 TACE
- inability to reach all main tumor vessels
- functional deterioration

ECOG  $\geq 2$ ,

hepatic decompensation (Child-Pough C)

LDH > 425 UI/ml AST > 100 UI/ml bilirubin > 2.0 mg/dl tumor volume > 50%



# Conclusion

- Combined lipiodol retention and tumor vascularity should be considered as predictors of disease progression after TACE
- Poor lipiodol retention may predict a poor TTP and OS despite the blood supply status.

## Response predictor

- TNM: tumor size < 7.0cm
- nodules: < 5
- Child-Pough class
- tumor vascularity
- portal vein occlusion
- initial compact lipiodolization (complete necrosis)

- aFP SINGAPORE ESTO ASIA 2015 18-21 DECEMBER SINGAPORE

# No agreement points on cTACE

- Lipiodol:
  - preparation: 10ml (<15ml per session, water-in-lipid)
  - administration
- Anti-cancer agent: cisplatin = adriamycin/epirubicin
- Embolic material: gelatin sponge particle (100~300 microns)
  - resorvable embolisation is recommended
  - lipiodol + particulates
    main tumor necrosis: 13% → 83%
    satellite necrosis : 6% → 53%
- Intervention technical details and device
- Treatment schedule
- Tumor response criteria
- Combination of treatment
- Subsequent treatment

Response end-points:

- imaging response (CT)
- biologic response (aFP)
- degree of tumor necrosis
- patient survival

```
- QoL
```