Discussion for abstract 3570

The tumor vascularity and lipiodol deposition predicts risk of disease progression after TACE in patients with unresectable HCC.

Hai –Liang Li et al.

Hyun Cheol Chung, M.D., Ph.D.
Yonsei Cancer Center
Yonsei University College of Medicine
Seoul, Korea
Disclosure

- Research fund, material: Lilly, Merck, GSK

- Advisor: Merck, Lilly, Celltrion, Taiho, Quintiles
Aim of the study

• BCLC stage B HCC is treated with TACE.
• Early studies did not support the hypothesis that lipiodol deposition is a predictor of overall survival (OS).
• In this study, the *prognostic value of tumor vascularity and lipiodol deposition* as well as other risk factors on OS and TTP were evaluated in BCLC B and C patients.

• Single institution, retrospective study
• cTACE: standard of care with level 1 evidence
 - TACE + embolization > TACE in OS
 - No other technology of TACE is superior to cTACE

Discordance in data:
 - Difference in patient population
 - Difference in cTACE technology
 - Difference in efficacy evaluation
 - Small number of patients
 - Short follow-up duration
 - Retrospective study
Baseline characteristics of subjects

<table>
<thead>
<tr>
<th></th>
<th>Subjects with good blood supply (n=101)</th>
<th>Subjects with poor lipiodol deposition (n=73)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>88 (87.13%)</td>
<td>62 (84.93%)</td>
</tr>
<tr>
<td>Female</td>
<td>13 (12.87%)</td>
<td>11 (15.07%)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>Median 57.35±11.71</td>
<td>57.01±12.01</td>
</tr>
<tr>
<td>Tumor size (cm)</td>
<td>8.2±4.63</td>
<td>8.41±5.11</td>
</tr>
<tr>
<td>Number of nodules</td>
<td>3.05±3.66</td>
<td>3±2.75</td>
</tr>
<tr>
<td>Child Pugh score</td>
<td>5.54±0.88</td>
<td>5.44±0.86</td>
</tr>
<tr>
<td>AFP</td>
<td>614.74±561.79</td>
<td>598.82±534.36</td>
</tr>
<tr>
<td>ECOG performance status</td>
<td>0.45±0.5</td>
<td>0.52±0.5</td>
</tr>
<tr>
<td>No. of TACE procedures</td>
<td>2.74±1.19</td>
<td>2.49±0.97</td>
</tr>
<tr>
<td>BCLC stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>63 (62.38%)</td>
<td>40 (54.79%)</td>
</tr>
<tr>
<td>C</td>
<td>38 (37.62%)</td>
<td>33 (45.21%)</td>
</tr>
</tbody>
</table>
Intermediate/advanced HCC

Tumor size (cm) 8.2±4.63 cm 8.41±5.11 cm

- Complete necrosis by size:
 - < 2 cm: 69%
 - 4~5 cm: 68%
 - > 6 cm: 13%

- 2 TACEs for complete necrosis
 - single session: 4.6 ± 1.8 cm
 - subsequent session: 6.3 ± 2.6 cm
 - non-response: 7.4 ± 4.4 cm

> 5 cm: rarely achieved compact lipiodolization
 → combined with RT, RFA
 - 5-7 cm: TACE + RT vs TACE → 2-yr OS: 63% vs 42%

Peng et al. JC0 2013
Multiplicity

Number of nodules 3.05±3.66 3±2.75

Retrospective study (n=490)
 single HCC 33.7%
 multiple HCC 14.6%

Kim et al. AP & T 2012
Inclusion criteria and Exclusion criteria

Inclusion criteria

1. Diagnosis of HCC (BCLC stage B or C)
2. Child-Pugh grade A or B
3. ECOG score of 0 or 1
4. Received at least two cycles of TACE

Exclusion criteria

1. Previous treatment with microwave ablation, radiofrequency ablation, surgical resection or liver transplantation after TACE
2. Platelet count <50×10^9/L
Multiple TACEs

No. of TACE procedures

- 2.74 ± 1.19
- 2.49 ± 0.97

- Georgiades et al. Retrospective study (n=116), at least 2 TACE

<table>
<thead>
<tr>
<th></th>
<th>EASL</th>
<th>mRECIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st No responder</td>
<td>45%</td>
<td>50%</td>
</tr>
<tr>
<td>2nd responder</td>
<td>44%</td>
<td>47%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>1-year OS</th>
<th>2-year OS</th>
<th>3-year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>66 ± 6</td>
<td>41 ± 6</td>
<td>25 ± 6</td>
</tr>
<tr>
<td>N1</td>
<td>53 ± 7</td>
<td>31 ± 7</td>
<td>19 ± 6</td>
</tr>
</tbody>
</table>

- P value: .16 .28 .49

<table>
<thead>
<tr>
<th>Group</th>
<th>1-year OS</th>
<th>2-year OS</th>
<th>3-year OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N1R2</td>
<td>68 ± 10</td>
<td>50 ± 11</td>
<td>37 ± 11</td>
</tr>
<tr>
<td>N1N2</td>
<td>39 ± 10</td>
<td>14 ± 7</td>
<td><.005*</td>
</tr>
</tbody>
</table>

- P value: .036 .006 <.005*
Patients diagnosed with HCC (n=101):
- arterial phase of baseline CT
- Based on tumor vascularity and lipiodol deposition after the first TACE

Follow-up visits were done every 2-3 months

Lost patients during follow-up

Number of HCC patients during study period

Excluded patients by criteria

- good blood supply group (n=101): arterial phase of baseline CT
 - good blood supply + good lipiodol deposition (n=59)
 - good blood supply + poor lipiodol deposition (n=42)
- poor lipiodol deposition group (n=73): CT after treatment
 - good blood supply + poor lipiodol deposition (n=42)
 - poor blood supply + poor lipiodol deposition (n=31)
TACE effect evaluation

- after 24 hours: by non-enhanced multi-slice detect CT (MDCT) homogenous *lipiodol retention*
- after 4 weeks: by contrast enhancement CT non-enhancing area + oil retention area: *necrosis*
 residual tumor *vascularization*

• Pre-treatment: vascularity evaluation
 post-treatment: degree of lipiodol uptake
Angiography:
golden standard for tumor vascularity evaluation

- **Intra-procedure imaging**
 - mesenteric celiac angio: detect branch to extra-hepatic structure
 detect extra-hepatic collaterals
 - 3D angio combined with MDCT

- **Delivery of treatment by continuous visualization**
 - targeting and distribution
 - non-target distribution
 confirm by CT(after 24 hours)
Follow-up TACE (> 4 weeks)

- gelatin sponge: re-cannalisation within 1-2 weeks, absorbed after 1 month

- lipiodol is gradually washed out in neovascularized tumor portion (≈ 4 weeks)

- Resuming of normal attenuation value in surrounding normal tissue: 1 month

- viable tumor re-growth: after 3-4 months
Vascularity evaluation

- **Vascularity evaluation**
 - hypervascularity: enhance than adjacent liver tissue or more than 50% hypervascularity
 - hypovascularity: equal to adjacent liver or less than 50% hypervascularity

- **Response criteria:**
 - decrease to < 25%: successful
 - decrease to > 25%: partial

Wober et al. Clin Hemorheo Microcirc 2014
Golden standard: hepatic angiography

- Dynamic MRI: prospective (n=37)
 Yamashita et al. Acra Radiol 1993
- Power doppler sonography (PDS): prospective (n=43), depth < 7cm
 Hosoki et al. Acta Radiol 1999
- Dynamic susceptibility contrast enhanced MRI (DSC-MRI): prospective (n=17)
 heterogenous enhancement
 Tsui et al. Clinical Imaging 2000
- Multiphase helical CT: prospective (n=72)
 Ebied et al. Cancer 2002
- Levovist power doppler U/S (Levovist US): prospective (n=46)
- Contrast enhanced U/S: prospective (n=29)
- Contrast enhanced U/S (CEUS) with multi-slice detection CT (MDCT)
 prospective (n=40)
- First-pass perfusion-weighted MRI (FP-MRI)

Dynamic CT (MDCT) and MRI: preferred as the golden standard for response evaluation after TACE
Tumor response evaluation

EASL: surface of viable part of tumor
mRECIST: arterially enhanced part (devascularization)

Choi, EASL, mRECIST > RECIST 1.1

Ronot et al. The Oncologist, 2014
Tumor necrosis and size change

- reduction of diameter (>30%, PR) or SD with necrosis (>50%)

Kim et al. Radiol 2010

- **1997-2009: retrospective study (n=50):**

 Response depends on vascularity

 - hypervascular tumor: 85% responsive
 - hypovascular tumor: 10% responsive

Lipiodol uptake: Survival depends on lipiodol uptake

<table>
<thead>
<tr>
<th></th>
<th>1-yr OS</th>
<th>2-yr OS</th>
<th>5-ys OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>compact</td>
<td>92.7%</td>
<td>70.7%</td>
<td>52.4%</td>
</tr>
<tr>
<td>incompact</td>
<td>60.8%</td>
<td>28.0%</td>
<td>16.9%</td>
</tr>
</tbody>
</table>

Kim et al. AP & T 2012
Hypervascular

Lipiodol uptake

Vascularity

Log-rank test p-value = 0.027

Log-rank test p-value = 0.709

Log-rank test p-value = 0.864

Log-rank test p-value = 0.997
• Ebied et al: based on both vascularity and responsiveness

<table>
<thead>
<tr>
<th>OS (Mo)</th>
<th>Hypervascular responders (n = 34) (%)</th>
<th>Hypervascular nonresponders (n = 28) (%)</th>
<th>Hypovascular responders (n = 4) (%)</th>
<th>Hypovascular nonresponders (n = 6) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>34(100)</td>
<td>25(89)</td>
<td>4(100)</td>
<td>5(83)</td>
</tr>
<tr>
<td>12</td>
<td>28(82)</td>
<td>18(44)</td>
<td>2(50)</td>
<td>0(0)</td>
</tr>
<tr>
<td>18</td>
<td>16(47)</td>
<td>4(14)</td>
<td>2(50)</td>
<td>0(0)</td>
</tr>
<tr>
<td>24</td>
<td>9(27)</td>
<td>3(11)</td>
<td>1(25)</td>
<td>0(0)</td>
</tr>
</tbody>
</table>
• **Different vascularity in HCC:**
 - due to differentiation and size
 - different uptake and deposition of lipiodol
 - collaterals
 - based on necrosis and associated hemorrhage

• **Subsequent treatment**
• **Causes of poor lipiodol**
• **Causes of death**
• **Small number of patients**
• Absence of lipiodol deposition
 - missing feeding vessel
 - extra-hepatic collaterals
 - radioembolization
 - systemic therapy
 - supportive care

• Hypervascular tumor:
 TACE is effective

Hypovascular tumor:
 RFA, ethanol
 → Combination with TACE
Stopping rules (shift to other treatment)

Number of TACE correlated with decreased risk of progression

- Most common causes of stopping sequential TACE:
 - diminished hepatic function reserve
 - marked reduction of general health status

- Stopping rule
 - absence of response in 2 TACE
 - inability to reach all main tumor vessels
 - functional deterioration
 - ECOG ≥ 2,
 - hepatic decompensation (Child-Pough C)
 - LDH > 425 UI/ml
 - AST > 100 UI/ml
 - bilirubin > 2.0 mg/dl
 - tumor volume > 50%
Conclusion

• Combined lipiodol retention and tumor vascularity should be considered as predictors of disease progression after TACE

• Poor lipiodol retention may predict a poor TTP and OS despite the blood supply status.

• **Response predictor**
 - TNM: tumor size $<$ 7.0cm
 - nodules: $<$ 5
 - Child-Pough class
 - tumor vascularity
 - portal vein occlusion
 - initial compact lipiodolization
 (complete necrosis)
 - aFP
No agreement points on cTACE

• Lipiodol:
 - preparation: 10ml (<15ml per session, water-in-lipid)
 - administration
• Anti-cancer agent: cisplatin = adriamycin/epirubicin
• Embolic material: gelatin sponge particle (100~300 microns)
 - resorvable embolisation is recommended
 - lipiodol + particulates
 main tumor necrosis: 13% → 83%
 satellite necrosis : 6% → 53%
• Intervention technical details and device
• Treatment schedule
• Tumor response criteria
• Combination of treatment
• Subsequent treatment

• Response end-points:
 - imaging response (CT)
 - biologic response (aFP)
 - degree of tumor necrosis
 - patient survival
 - QoL