Nasopharyngeal cancer adoptive immunotherapy and vaccines

Dr Neil Steven

Clinical Senior Lecturer in Medical Oncology

Deputy Clinical Director, Cancer Research UK Clinical Trials Unit, Birmingham

n.m.steven@bham.ac.uk

Disclosure slide

- Advisory boards Roche, GSK (now Novartis), Amgen, Merck
- Educational services for Amgen

Immune control of primary and latent Epstein-Barr virus infection

Immune control of primary and latent Epstein-Barr virus infection

T cell therapy induces major responses

T cell therapy in NPC

A brief history of EBV-directed immunotherapy

Vaccination

SINGAPORE

18-21 DECEMBER

SINGAPORE

MVA-EBNA1/LMP2: A therapeutic vaccine

- Contains class I epitopes (white) and class II epitopes (blue)
- An immunogenic attenuated replication-defective vaccinia virus vector
- Fusion protein transports EBNA1 to endo/lysosomal pathway, enhancing antigen presentation

SINGAPORE ESTOASIA 18-21 DECEMBER SINGAPORE Taylor GS et al Journal of Virology 2004; 78:768-78.

Parallel trials in UK and Hong Kong

Phase IA Trial (UK)

- EBV+ cancer in remission or low volume stable recurrence
- Safety, immunogenicity
- 3+3 dose escalation vaccine
- n=16/18
- 3 cycles over 9 weeks

Phase IA Trial (Hong Kong)

- EBV+ NPC in remission or low volume stable recurrence
- Safety, immunogenicity
- 3+3 dose escalation vaccine
- n=18
- 3 cycles over 9 weeks

The Chinese University of Hong Kong Broad CD8+ and CD4+ T-cell responses to vaccination in *ex vivo* immune assays

Phase Ia, Hong Kong, remission, 3 doses of 5x10⁸ pfu

Hui EP, Taylor GS et al Cancer Res. 2013;73(6):1676-88

Dose selected for further study

300

 $R^2 = 0.35$

	Vaccine target antigens	
	EBNA1	LMP2
Dose level 1	3/8	3/8
Dose level 2	2/5	1/5
Dose level 3	4/4	1/4
Dose level 4	3/4	2/4
Dose level 5	6/6	5/6
All patients	18/27	12/27

P = 0.01200 100 2.0×108 4.0×108 6.0×10⁸ Vaccine dose (pfu) -100-LMP2 T cell response 300- $R^2 = 0.48$ 200 P = 0.03100 2.0×10⁸ 6.0×10⁸ 4.0×10⁸ Vaccine dose (pfu) -100

EBNA1 T cell response

Every patient treated at dose level 3 or higher (n=14) had a vaccine-induced EBNA1 and/or LMP2 T-cell response.

18-21 DECEMBER

SINGAPORE

Taylor GS et al. Clin Cancer Res. 2014;20(19):5009-22

The vaccine is widely applicable

Responses in NPC patients of European or Chinese ethnicity

Responses to multiple epitopes in EBNA1 and LMP2

Responses restricted through wide range of HLA alleles *including* common European (A*02.01) and Chinese (A*02.03, A*02.6, A*11, A*24) alleles.

benefit) and 70% (benefit)

SINGAPORE ESTOASIA 18-21 DECEMBER SINGAPORE

of Hong Kong

Responses after chemoradiotherapy, below limit of detection in ex vivo assays, can amplify after vaccination

UK Phase lb trial, 80 year old patient, remission. Single dose 5x10⁸ vaccine Undetectable ex vivo response to vaccination

In vitro stimulation and culture and detection of IFNy cells by flow cytometry

Vaccination increases immune response quality (*ex vivo* assay)

After Vaccination

- increase in response size
- increase in polyfunctionality

Vaccination increases immune response quality (*ex vivo* assay)

Regulatory T-cells increased in NPC patients

Vaccination stimulates EBNA1 and LMP2 T-cell responses despite high T-reg numbers

Patient 16/016 UK Phase Ib, 5x10⁸ pfu, ex vivo IFN-g ELIspot assay

Clinical effect of blocking PD1 PD-L1 signalling

- Antitumor activity and safety of *pembrolizumab* in patients with PD-L1positive nasopharyngeal carcinoma: Interim results from a phase 1b study.
- KEYNOTE-028 (NCT02054806) nonrandomized, multicohort phase 1b trial
- advanced (unresectable and/or metastatic) NPC, failed prior therapy, PSO-1, PD-L1 expression in ≥1% of cells in tumor nests or PD-L1⁺ bands in stroma
- Pembrolizumab 10mg/kg every 2 weeks for up to 2 years
- N=27, median age 52, 63% Asian
- 1 CR, 6 PR, 14 SD
- ORR 25.9% (95% CI 11.1-46.3%)
- Median PFS 5.6 months, 12month PFS 28.6%

<u>C. Hsu</u>, et al. European Cancer Conference 2015 Abstract 2801

The cancer immunity cycle

specific T cells into tumours

Adapted from: Chen DS, Immunity 2013;39:1–10; Liu et al. Gene Ther 2003;10:292– 303; Mellman I, et al. Nature 2011;480:480–9; Ribas A. N Engl J Med 2012;366:2517–9.

Therapeutic targets and strategies

Profiling the tumour micro-environment I. Adaptive immune II. Immune ignorance resistance

Phase II – combination

- Objective
 - Detect a difference between the arms in overall response rate is sufficient to justify continuation to phase III investigation
- Population
 - Patients with metastatic or refractory EBV+ cancer
- Intervention
 - Immune checkpoint inhibitor +/- initial accelerated vaccine schedule

Accelerated vaccination in combination

Biological profiling in phase II combination trial

Circulating T cells

- Receptor expression

Target antigens

Shared

Unique

Circulating T cells

Number

Function

Epitope spreading

Activation phenotype

Viral

- Adhesion molecules
- Function

Tumour micro-environment

- Micro-anatomy of infiltrates
- Profiling immune cells
- Gene expression profiling

SINGAPORE ESTO ASIA 2015 18-21 DECEMBER SINGAPORE

An international trials collaboration

